运筹学 05.pptx_第1页
运筹学 05.pptx_第2页
运筹学 05.pptx_第3页
运筹学 05.pptx_第4页
运筹学 05.pptx_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter5SensitivityAnalysis AnAppliedApproach toaccompanyOperationsResearch ApplicationsandAlgorithms4theditionbyWayneL Winston Copyright c 2004Brooks Cole adivisionofThomsonLearning Inc 5 1 AGraphicalIntroductiontoSensitivityAnalysis SensitivityanalysisisconcernedwithhowchangesinanLP sparametersaffecttheoptimalsolution ReconsidertheGiapettoproblemfromChapter3 Where x1 numberofsoldiersproducedeachweekx2 numberoftrainsproducedeachweek maxz 3x1 2x22x1 x2 100 finishingconstraint x1 x2 80 carpentryconstraint x1 40 demandconstraint x1 x2 0 signrestriction TheoptimalsolutionforthisLPwasz 180 x1 20 x2 60 pointB andithasx1 x2 ands3 theslackvariableforthedemandconstraint asbasicvariables Howwouldchangesintheproblem sobjectivefunctioncoefficientsorright handsidevalueschangethisoptimalsolution GraphicalanalysisoftheeffectofachangeinanobjectivefunctionvaluefortheGiapettoLPshows Byinspection wecanseethatmakingtheslopeoftheisoprofitlinemorenegativethanthefinishingconstraint slope 2 willcausetheoptimalpointtoswitchfrompointBtopointC Likewise makingtheslopeoftheisoprofitlinelessnegativethanthecarpentryconstraint slope 1 willcausetheoptimalpointtoswitchfrompointBtopointA Clearly theslopeoftheisoprofitlinemustbebetween 2and 1forthecurrentbasistoremainoptimal Agraphicalanalysiscanalsobeusedtodeterminewhetherachangeintherhsofaconstraintwillmakethecurrentbasisnolongeroptimal Forexample letb1 numberofavailablefinishinghours Thecurrentoptimalsolution pointB iswherethecarpentryandfinishingconstraintsarebinding Ifthevalueofb1ischanged thenaslongaswherethecarpentryandfinishingconstraintsarebinding theoptimalsolutionwillstilloccurwherethecarpentryandfinishingconstraintsintersect IntheGiapettoproblemtotheright weseethatifb1 120 x1willbegreaterthan40andwillviolatethedemandconstraint Also ifb1 80 x1willbelessthan0andthenonnegativityconstraintforx1willbeviolated Therefore 80 b1 120Thecurrentbasisremainsoptimalfor80 b1 120 butthedecisionvariablevaluesandz valuewillchange Itisoftenimportanttodeterminehowachangeinaconstraint srhschangestheLP soptimalz value TheshadowpricefortheithconstraintofanLPistheamountbywhichtheoptimalz valueisimprovediftherhsoftheithconstraintisincreasedbyone Thisdefinitionappliesonlyifthechangeintherhsofconstraintileavesthecurrentbasisoptimal Forthefinishingconstraint 100 finishinghoursareavailable TheLP soptimalsolutionisthenx1 20 andx2 60 withz 3x1 2x2 3 20 2 60 180 Thus aslongasthecurrentbasisremainsoptimal aone unitincreaseinthenumberoffinishinghourswillincreasetheoptimalz valueby 1 So theshadowpriceforthefirst finishinghours constraintis 1 Sensitivityanalysisisimportantforseveralreasons ValuesofLPparametersmightchange Ifaparameterchanges sensitivityanalysisshowsitisunnecessarytosolvetheproblemagain ForexampleintheGiapettoproblem iftheprofitcontributionofasoldierchangesto 3 50 sensitivityanalysisshowsthecurrentsolutionremainsoptimal UncertaintyaboutLPparameters IntheGiapettoproblemforexample iftheweeklydemandforsoldiersisatleast20 theoptimalsolutionremains20soldiersand60trains Thus evenifdemandforsoldiersisuncertain thecompanycanbefairlyconfidentthatitisstilloptimaltoproduce20soldiersand60trains 5 2TheComputerandSensitivityAnalysis IfanLPhasmorethantwodecisionvariables therangeofvaluesforarhs orobjectivefunctioncoefficient forwhichthebasisremainsoptimalcannotbedeterminedgraphically Theserangescanbecomputedbyhandbutthisisoftentedious sotheyareusuallydeterminedbyapackagedcomputerprogram LINDOwillbeusedandtheinterpretationofitssensitivityanalysisdiscussed Example1 WincoProducts1 Wincosellsfourtypesofproducts Theresourcesneededtoproduceoneunitofeachareknown Tomeetcustomerdemand exactly950totalunitsmustbeproduced Customersdemandthatatleast400unitsofproduct4beproduced FormulateanLPtomaximizeprofit Example1 Solution Letxi numberofunitsofproductiproducedbyWinco TheWincoLPformulation maxz 4x1 6x2 7x3 8x4s t x1 x2 x3 x4 950 x4 4002x1 3x2 4x3 7x4 46003x1 4x2 5x3 6x4 5000 x1 x2 x3 x4 0 Ex 1 Solutioncontinued TheLINDOoutput Reducedcostistheamounttheobjectivefunctioncoefficientforvariableiwouldhavetobeincreasedfortheretobeanalternativeoptimalsolution MAX4X1 6X2 7X3 8X4SUBJECTTO2 X1 X2 X3 X4 9503 X4 4004 2X1 3X2 4X3 7X4 46005 3X1 4X2 5X3 6X4 5000ENDLPOPTIMUMFOUNDATSTEP4OBJECTIVEFUNCTIONVALUE1 6650 000VARIABLEVALUEREDUCEDCOSTX10 0000001 000000X2400 0000000 000000X3150 0000000 000000X4400 0000000 000000ROWSLACKORSURPLUSDUALPRICES2 0 0000003 0000003 0 000000 2 0000004 0 0000001 0000005 250 0000000 000000NO ITERATIONS 4 Ex 1 Solutioncontinued LINDOsensitivityanalysisoutputAllowablerange w ochangingbasis forthex2coefficient c2 is 5 50 c2 6 667Allowablerange w ochangingbasis fortherhs b1 ofthefirstconstraintis 850 b1 1000 RANGESINWHICHTHEBASISISUNCHANGED OBJCOEFFICIENTRANGESVARIABLECURRENTALLOWABLEALLOWABLECOEFINCREASEDECREASEX14 0000001 000000INFINITYX26 0000000 6666670 500000X37 0000001 0000000 500000X48 0000002 000000INFINITYRIGHTHANDSIDERANGESROWCURRENTALLOWABLEALLOWABLERHSINCREASEDECREASE2950 00000050 000000100 0000003400 00000037 500000125 00000044600 000000250 000000150 00000055000 000000INFINITY250 000000 Ex 1 Solutioncontinued ShadowpricesareshownintheDualPricessectionofLINDOoutput Shadowpricesaretheamounttheoptimalz valueimprovesiftherhsofaconstraintisincreasedbyoneunit assumingnochangeinbasis MAX4X1 6X2 7X3 8X4SUBJECTTO2 X1 X2 X3 X4 9503 X4 4004 2X1 3X2 4X3 7X4 46005 3X1 4X2 5X3 6X4 5000ENDLPOPTIMUMFOUNDATSTEP4OBJECTIVEFUNCTIONVALUE1 6650 000VARIABLEVALUEREDUCEDCOSTX10 0000001 000000X2400 0000000 000000X3150 0000000 000000X4400 0000000 000000ROWSLACKORSURPLUSDUALPRICES2 0 0000003 0000003 0 000000 2 0000004 0 0000001 0000005 250 0000000 000000NO ITERATIONS 4 Shadowpricesigns Constraintswith symbolswillalwayshavenonpositiveshadowprices Constraintswith willalwayshavenonnegativeshadowprices Equalityconstraintsmayhaveapositive anegative orazeroshadowprice Foranyinequalityconstraint theproductofthevaluesoftheconstraint sslack excessvariableandtheconstraint sshadowpricemustequalzero Thisimpliesthatanyconstraintwhoseslackorexcessvariable 0willhaveazeroshadowprice Similarly anyconstraintwithanonzeroshadowpricemustbebinding haveslackorexcessequalingzero Forconstraintswithnonzeroslackorexcess relationshipsaredetailedinthetablebelow Whentheoptimalsolutionisdegenerate abfsisdegenerateifatleastonebasicvariableintheoptimalsolutionequals0 cautionmustbeusedwheninterpretingtheLINDOoutput ForanLPwithmconstraints iftheoptimalLINDOoutputindicateslessthanmvariablesarepositive thentheoptimalsolutionisdegeneratebfs MAX6X1 4X2 3X3 2X4SUBJECTTO2 2X1 3X2 X3 2X4 4003 X1 X2 2X3 X4 1504 2X1 X2 X3 0 5X4 2005 3X1 X2 X4 250 5 3ManagerialUseofShadowPrices Themanagerialsignificanceofshadowpricesisthattheycanoftenbeusedtodeterminethemaximumamountamangershouldbewillingtopayforanadditionalunitofaresource Example5 WincoProducts2 ReconsidertheWincototheright WhatisthemostWincoshouldbewillingtopayforadditionalunitsofrawmaterialorlabor 5 4WhathappenstotheOptimalz ValueiftheCurrentBasisIsNoLongerOptimal Shadowpriceswereusedtodeterminethenewoptimalz valueiftherhsofaconstraintwaschangedbutremainedwithintherangewherethecurrentbasisremainsoptimal ChangingtherhsofaconstrainttovalueswherethecurrentbasisisnolongeroptimalcanbeaddressedbytheLINDOPARAMETRICSfeature Thisfeaturecanbeusedtodeterminehowtheshadowpriceofaconstraintandoptimalz valuechange ForanyLP thegraphoftheoptima

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论