




免费预览已结束,剩余9页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
某某某大学毕业设计(论文)蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄薂螄肈莇莄蚀膇肆薀薆螃腿莃蒂螂芁薈袀螂肁蒁螆螁膃蚆蚂螀芅葿薈蝿莇节袇螈肇蒈螃袇腿芀虿袆节蒆薅袆羁艿薁袅膄薄袀袄芆莇螆袃莈薂蚂袂肈莅薈袁膀薁蒄羀芃莃螂羀羂蕿蚈罿肅莂蚄羈芇蚇薀羇荿蒀衿羆聿芃螅羅膁蒈蚁羅芃芁薇肄羃蒇蒃肃肅艿螁肂膈蒅螇肁莀芈蚃肀肀薃蕿聿膂莆袈聿芄腿莁蚅羄羂芇螄蚄膇膃莁螆羀聿莀袈膅莈荿蚈羈莄莈螀芄芀莇袃肇膆莆羅衿蒄莆蚄肅莀莅螇袈芆蒄衿肃膂蒃蕿袆肈蒂螁肁蒇蒁袃羄莃蒀羆膀艿蒀蚅羃膅葿螈膈肁蒈袀羁莀薇薀膆芅薆蚂罿膁薅袄膅膇薄羇肇蒆薄蚆袀莂薃螈肆芈薂袁衿膄蚁薀肄肀蚀蚃袇荿虿螅肂芅蚈羇袅芁蚈蚇膁膇蚇蝿羃蒅蚆袂腿莁蚅羄羂芇螄蚄膇膃莁螆羀聿莀袈膅莈荿蚈羈莄莈螀芄芀莇袃肇膆莆羅衿蒄莆蚄肅莀莅螇袈芆蒄衿肃膂蒃蕿袆肈蒂螁肁蒇蒁袃羄莃蒀羆膀艿蒀蚅羃膅葿螈膈肁蒈袀羁莀薇薀膆芅薆蚂罿膁薅袄膅膇薄羇肇蒆薄蚆袀莂薃螈肆芈薂袁衿膄蚁薀肄肀蚀蚃袇荿虿螅肂芅蚈羇袅芁蚈蚇膁膇蚇蝿羃蒅蚆袂腿莁蚅羄羂芇螄蚄膇膃莁螆羀聿莀袈膅莈荿蚈羈莄莈螀芄芀莇袃肇膆莆羅衿蒄莆蚄肅莀莅螇袈芆蒄衿肃膂蒃蕿袆肈蒂螁肁蒇蒁袃羄莃蒀羆膀艿蒀蚅羃膅葿螈膈肁蒈袀羁莀薇薀膆芅薆蚂罿膁薅袄膅膇薄羇肇蒆薄蚆袀莂薃螈肆芈薂袁衿膄蚁薀肄肀蚀蚃袇荿虿螅肂芅蚈羇袅芁蚈蚇膁膇蚇蝿羃蒅蚆袂腿莁蚅羄羂芇螄蚄膇膃莁螆羀聿莀袈膅莈荿蚈羈莄莈螀芄芀莇袃肇膆莆羅衿蒄莆蚄肅莀莅螇袈芆蒄衿肃膂蒃蕿袆肈蒂螁肁蒇蒁袃羄莃蒀羆膀艿蒀蚅羃膅葿螈膈肁蒈袀羁莀薇薀膆芅薆蚂罿膁薅袄膅膇薄羇肇蒆薄蚆袀莂薃螈肆芈薂袁衿膄蚁薀肄肀蚀蚃袇荿虿螅肂芅蚈羇袅芁蚈蚇膁膇蚇蝿羃蒅蚆袂腿莁蚅羄羂芇螄蚄膇膃莁螆羀聿莀袈膅莈荿蚈羈莄莈螀芄芀莇袃肇膆莆羅衿蒄莆蚄肅莀莅螇袈芆蒄衿肃膂蒃蕿袆肈蒂螁肁蒇蒁袃羄莃蒀羆膀艿蒀蚅羃膅葿螈膈肁蒈袀羁莀薇薀膆芅薆蚂罿膁薅袄膅膇薄羇肇蒆薄蚆袀莂薃螈肆芈薂袁衿膄蚁薀肄肀蚀蚃袇荿虿螅肂芅蚈羇袅芁蚈蚇膁膇蚇蝿羃蒅蚆袂腿莁蚅羄羂芇螄蚄膇膃莁螆羀聿莀袈膅莈荿蚈羈莄莈螀芄芀莇袃肇膆莆羅衿蒄莆蚄肅莀莅螇袈芆蒄衿肃膂蒃蕿袆肈蒂螁肁蒇蒁袃羄莃蒀羆膀艿蒀蚅羃膅葿螈膈肁蒈袀羁莀薇薀膆芅薆蚂罿膁薅袄膅膇薄羇肇蒆薄蚆袀莂薃螈肆芈薂袁衿膄蚁薀肄肀蚀蚃袇荿虿螅肂芅蚈羇袅芁蚈蚇膁膇蚇蝿羃蒅蚆袂腿莁蚅羄羂芇螄蚄膇膃莁螆羀聿莀袈膅莈荿蚈羈莄莈螀芄芀莇袃肇膆莆羅衿蒄莆蚄肅莀莅螇袈芆蒄衿肃膂蒃蕿袆肈蒂螁肁蒇蒁袃羄莃蒀羆膀艿蒀蚅羃膅葿螈膈肁蒈袀羁莀薇薀膆芅薆蚂罿膁薅袄膅膇薄羇肇蒆薄蚆袀莂薃螈肆芈薂袁衿膄蚁薀肄肀蚀蚃袇荿虿螅肂芅蚈羇袅芁蚈蚇膁膇蚇蝿羃蒅蚆袂腿莁蚅羄羂芇螄蚄膇膃莁螆羀聿莀袈膅莈荿蚈羈莄莈螀芄芀莇袃肇膆莆羅衿蒄莆蚄肅莀莅螇袈芆蒄衿肃膂蒃蕿袆肈蒂螁肁蒇蒁袃羄莃蒀羆膀艿蒀蚅羃膅葿螈膈肁蒈袀羁莀薇薀膆芅薆蚂罿膁薅袄膅膇薄羇肇蒆薄蚆袀莂薃螈肆芈薂袁衿膄蚁薀肄肀蚀蚃袇荿虿螅肂芅蚈羇袅芁蚈蚇膁膇蚇蝿羃蒅蚆袂腿莁蚅羄羂芇螄蚄膇膃莁螆羀聿莀袈膅莈荿 Failure Properties of Fractured Rock Masses as AnisotropicHomogenized MediaIntroductionIt is commonly acknowledged that rock masses always display discontinuous surfaces of various sizes and orientations, usually referred to as fractures or joints. Since the latter have much poorer mechanical characteristics than the rock material, they play a decisive role in the overall behavior of rock structures,whose deformation as well as failure patterns are mainly governed by those of the joints. It follows that, from a geomechanical engineering standpoint, design methods of structures involving jointed rock masses, must absolutely account for such weakness surfaces in their analysis.The most straightforward way of dealing with this situation is to treat the jointed rock mass as an assemblage of pieces of intact rock material in mutual interaction through the separating joint interfaces. Many design-oriented methods relating to this kind of approach have been developed in the past decades, among them,the well-known block theory, which attempts to identify poten-tially unstable lumps of rock from geometrical and kinematical considerations (Goodman and Shi 1985; Warburton 1987; Goodman 1995). One should also quote the widely used distinct element method, originating from the works of Cundall and coauthors (Cundall and Strack 1979; Cundall 1988), which makes use of an explicit nite-difference numerical scheme for computing the displacements of the blocks considered as rigid or deformable bodies. In this context, attention is primarily focused on the formulation of realistic models for describing the joint behavior.Since the previously mentioned direct approach is becoming highly complex, and then numerically untractable, as soon as a very large number of blocks is involved, it seems advisable to look for alternative methods such as those derived from the concept of homogenization. Actually, such a concept is already partially conveyed in an empirical fashion by the famous Hoek and Browns criterion (Hoek and Brown 1980; Hoek 1983). It stems from the intuitive idea that from a macroscopic point of view, a rock mass intersected by a regular network of joint surfaces, may be perceived as a homogeneous continuum. Furthermore, owing to the existence of joint preferential orientations, one should expect such a homogenized material to exhibit anisotropic properties.The objective of the present paper is to derive a rigorous formulation for the failure criterion of a jointed rock mass as a homogenized medium, from the knowledge of the joints and rock material respective criteria. In the particular situation where twomutually orthogonal joint sets are considered, a closed-form expression is obtained, giving clear evidence of the related strength anisotropy. A comparison is performed on an illustrative example between the results produced by the homogenization method,making use of the previously determined criterion, and those obtained by means of a computer code based on the distinct element method. It is shown that, while both methods lead to almost identical results for a densely fractured rock mass, a size or scale effect is observed in the case of a limited number of joints. The second part of the paper is then devoted to proposing a method which attempts to capture such a scale effect, while still taking advantage of a homogenization technique. This is achieved by resorting to a micropolar or Cosserat continuum description of the fractured rock mass, through the derivation of a generalized macroscopic failure condition expressed in terms of stresses and couple stresses. The implementation of this model is nally illustrated on a simple example, showing how it may actually account for such a scale effect.Problem Statement and Principle of Homogenization ApproachThe problem under consideration is that of a foundation (bridge pier or abutment) resting upon a fractured bedrock (Fig. 1), whose bearing capacity needs to be evaluated from the knowledge of the strength capacities of the rock matrix and the joint interfaces. The failure condition of the former will be expressed through the classical Mohr-Coulomb condition expressed by means of the cohesion and the friction angle . Note that tensile stresses will be counted positive throughout the paper.Likewise, the joints will be modeled as plane interfaces (represented by lines in the gures plane). Their strength properties are described by means of a condition involving the stress vector of components (, ) acting at any point of those interfacesAccording to the yield design (or limit analysis) reasoning, the above structure will remain safe under a given vertical load Q(force per unit length along the Oz axis), if one can exhibit throughout the rock mass a stress distribution which satises the equilibrium equations along with the stress boundary conditions,while complying with the strength requirement expressed at any point of the structure.This problem amounts to evaluating the ultimate load Q beyond which failure will occur, or equivalently within which its stability is ensured. Due to the strong heterogeneity of the jointed rock mass, insurmountable difculties are likely to arise when trying to implement the above reasoning directly. As regards, for instance, the case where the strength properties of the joints are considerably lower than those of the rock matrix, the implementation of a kinematic approach would require the use of failure mechanisms involving velocity jumps across the joints, since the latter would constitute preferential zones for the occurrence offailure. Indeed, such a direct approach which is applied in most classical design methods, is becoming rapidly complex as the density of joints increases, that is as the typical joint spacing l is becoming small in comparison with a characteristic length of the structure such as the foundation width B.In such a situation, the use of an alternative approach based on the idea of homogenization and related concept of macroscopic equivalent continuum for the jointed rock mass, may be appropriate for dealing with such a problem. More details about this theory, applied in the context of reinforced soil and rock mechanics, will be found in (de Buhan et al. 1989; de Buhan and Salenc ,on 1990; Bernaud et al. 1995).Macroscopic Failure Condition for Jointed Rock MassThe formulation of the macroscopic failure condition of a jointed rock mass may be obtained from the solution of an auxiliary yield design boundary-value problem attached to a unit representative cell of jointed rock (Bekaert and Maghous 1996; Maghous et al.1998). It will now be explicitly formulated in the particular situation of two mutually orthogonal sets of joints under plane strain conditions. Referring to an orthonormal frame Owhose axes are placed along the joints directions, and introducing the following change of stress variables:such a macroscopic failure condition simply becomeswhere it will be assumed that A convenient representation of the macroscopic criterion is to draw the strength envelope relating to an oriented facet of the homogenized material, whose unit normal n I is inclined by an angle a with respect to the joint direction. Denoting by and the normal and shear components of the stress vector acting upon such a facet, it is possible to determine for any value of a the set of admissible stresses ( , ) deduced from conditions (3) expressed in terms of (, , ). The corresponding domain has been drawn in Fig. 2 in the particular case where .Two comments are worth being made:1. The decrease in strength of a rock material due to the presence of joints is clearly illustrated by Fig. 2. The usual strength envelope corresponding to the rock matrix failure condition is truncated by two orthogonal semilines as soon as condition is fullled.2. The macroscopic anisotropy is also quite apparent, since for instance the strength envelope drawn in Fig. 2 is dependent on the facet orientation a. The usual notion of intrinsic curve should therefore be discarded, but also the concepts of anisotropic cohesion and friction angle as tentatively introduced by Jaeger (1960), or Mc Lamore and Gray (1967).Nor can such an anisotropy be properly described by means of criteria based on an extension of the classical Mohr-Coulomb condition using the concept of anisotropy tensor(Boehler and Sawczuk 1977; Nova 1980; Allirot and Bochler1981).Application to Stability of Jointed Rock ExcavationThe closed-form expression (3) obtained for the macroscopic failure condition, makes it then possible to perform the failure design of any structure built in such a material, such as the excavation shown in Fig. 3, where h and denote the excavation height and the slope angle, respectively. Since no surcharge is applied to the structure, the specic weight of the constituent material will obviously constitute the sole loading parameter of the system.Assessing the stability of this structure will amount to evaluating the maximum possible height h+ beyond which failure will occur. A standard dimensional analysis of this problem shows that this critical height may be put in the formwhere =joint orientation and K+=nondimensional factor governing the stability of the excavation. Upper-bound estimates of this factor will now be determined by means of the yield design kinematic approach, using two kinds of failure mechanisms shown in Fig. 4.Rotational Failure Mechanism Fig. 4(a)The rst class of failure mechanisms considered in the analysis is a direct transposition of those usually employed for homogeneous and isotropic soil or rock slopes. In such a mechanism a volume of homogenized jointed rock mass is rotating about a point with an angular velocity . The curve separating this volume from the rest of the structure which is kept motionless is a velocity jump line. Since it is an arc of the log spiral of angle and focus the velocity discontinuity at any point of this line is inclined at angle wm with respect to the tangent at the same point.The work done by the external forces and the maximum resisting work developed in such a mechanism may be written as (see Chen and Liu 1990; Maghous et al. 1998)where and =dimensionless functions, and 1 and 2=angles specifying the position of the center of rotation .Since the kinematic approach of yield design states that a necessary condition for the structure to be stable writesit follows from Eqs. (5) and (6) that the best upper-bound estimate derived from this rst class of mechanism is obtained by minimization with respect to 1 and 2which may be determined numerically.Piecewise Rigid-Block Failure Mechanism Fig. 4(b)The second class of failure mechanisms involves two translating blocks of homogenized material. It is dened by ve angular parameters. In ord
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 晋中市中医院运动损伤诊断与治疗考核
- 大同市中医院经鼻蝶窦手术技术考核
- 长治市中医院听觉诱发电位考核
- 企业招投标文件编制规范指南
- 吉林大学第二医院聘用制管理系列人员招聘考试真题2024
- 唐山市中医院眼睑内外翻矫正术考核
- 晋城市中医院意识障碍患者管理考核
- 深圳市初中数学竞赛模拟试卷合集
- 202x年小学校园书香节活动方案
- 通辽市人民医院红细胞血型系统非ABO知识深度考核
- 全过程工程咨询投标方案(技术方案)
- DL-T5394-2021电力工程地下金属构筑物防腐技术导则
- 诗歌《舟夜书所见》课件
- (完整版)历年中医药大学博士考题
- 自动化生产线运行与维护完整版课件(全)
- 荨麻疹ppt课件(PPT 40页)
- 蒂森I型诊断仪最新说明书
- 植物体中物质的运输
- 高速铁路牵引供电系统6C系统运用现状分析(课堂PPT)
- 近年国内外高校化学试验室安全事故警示录ppt课件
- DCP决策评审要素
评论
0/150
提交评论