




已阅读5页,还剩37页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter11NonlinearProgramming toaccompanyOperationsResearch ApplicationsandAlgorithms4theditionbyWayneL Winston Copyright c 2004Brooks Cole adivisionofThomsonLearning Inc 11 1ReviewofDifferentialCalculus Theequationmeansthatasxgetsclosertoa butnotequaltoa thevalueoff x getsarbitrarilyclosetoc Afunctionf x iscontinuousatapointifIff x isnotcontinuousatx a wesaythatf x isdiscontinuous orhasadiscontinuity ata Thederivativeofafunctionf x atx a writtenf a isdefinedtobeN thorderTaylorseriesexpansionThepartialderivativeoff x1 x2 xn withrespecttothevariablexiiswritten 11 2IntroductoryConcepts Ageneralnonlinearprogrammingproblem NLP canbeexpressedasfollows Findthevaluesofdecisionvariablesx1 x2 xnthat max ormin z f x1 x2 xn s t g1 x1 x2 xn or b1s t g2 x1 x2 xn or b2 gm x1 x2 xn or bm Asinlinearprogrammingf x1 x2 xn istheNLP sobjectivefunction andg1 x1 x2 xn or b1 gm x1 x2 xn or bmaretheNLP sconstraints AnNLPwithnoconstraintsisanunconstrainedNLP ThefeasibleregionforNLPaboveisthesetofpoints x1 x2 xn thatsatisfythemconstraintsintheNLP Apointinthefeasibleregionisafeasiblepoint andapointthatisnotinthefeasibleregionisaninfeasiblepoint IftheNLPisamaximizationproblemthenanypointinthefeasibleregionforwhichf f x holdstrueforallpointsxinthefeasibleregionisanoptimalsolutiontotheNLP NLPscanbesolvedwithLINGO EvenifthefeasibleregionforanNLPisaconvexset heoptimalsolutionneednotbeaextremepointoftheNLP sfeasibleregion ForanyNLP maximization afeasiblepointx x1 x2 xn isalocalmaximumifforsufficientlysmall anyfeasiblepointx x 1 x 2 x n having x1 x 1 i 1 2 n satisfiesf x f x Example11 TireProduction Firerockproducesrubberusedfortiresbycombiningthreeingredients rubber oil andcarbonblack Thecostsforeacharegiven Therubberusedinautomobiletiresmusthaveahardnessofbetween25and35anelasticityofat16atensilestrengthofatleast12Tomanufactureasetoffourautomobiletires 100poundsofproductisneeded Therubbertomakeasetoftiresmustcontainbetween25and60poundsofrubberandatleast50poundsofcarbonblack Ex 11 continued Define R poundsofrubberinmixtureusedtoproducefourtiresO poundsofoilinmixtureusedtoproducefourtiresC poundsofcarbonblackusedtoproducefourtiresStatisticalanalysishasshownthatthehardness elasticity andtensilestrnegthofa100 poundmixtureofrubber oil andcarbonblackisTensilestrength 12 5 10 O 001 O 2Elasticity 17 35R 04 O 002 O 2Hardness 34 10R 06 O 3 C 001 R O 005 O 2 001C2FormulatetheNLPwhosesolutionwilltellFirerockhowtominimizethecostofproducingtherubberproductneededtomanufactureasetofautomobiletires Example11 Solution AfterdefiningTS TensileStrengthE ElasticityH HardnessofmixturetheLINGOprogramgivesthecorrectformulation ItiseasytousetheExcelSolvertosolveNLPs Theprocessissimilartoalinearmodel ForNLPshavingmultiplelocaloptimalsolutions theSolvermayfailtofindtheoptimalsolutionbecauseitmaypickalocalextremumthatisnotaglobalextremum 11 3ConvexandConcaveFunctions Afunctionf x1 x2 xn isaconvexfunctiononaconvexsetSifforanyx sandxn sf cx 1 c xn cf x 1 c f xn holdsfor0 c 1 Afunctionf x1 x2 xn isaconcavefunctiononaconvexsetSifforanyx sandxn sf cx 1 c xn cf x 1 c f xn holdsfor0 c 1 Theorems ConsiderageneralNLP SupposethefeasibleregionSforNLPisaconvexset Iff x isconcaveonS thenanylocalmaximum minimum fortheNLPisanoptimalsolutiontotheNLP Supposefn x existsforallxinaconvexsetS Thenf x isaconvex concave functionofSifandonlyiffn x 0 fn x 0 forallxinS Supposef x1 x2 xn hascontinuoussecond orderpartialderivativesforeachpointx x1 x2 xn S Thenf x1 x2 xn isaconvexfunctiononSifandonlyifforeachx S allprincipalminorsofHarenon negative Supposef x1 x2 xn hascontinuoussecond orderpartialderivativesforeachpointx x1 x2 xn S Thenf x1 x2 xn isaconcavefunctiononSifandonlyifforeachx Sandk 1 2 n allnonzeroprincipalminorshavethesamesignas 1 k TheHessianoff x1 x2 xn isthenxnmatrixwhoseijthentryisAnithprincipalminorofannxnmatrixisthedeterminantofanyiximatrixobtainedbydeletingn irowsandthecorrespondingn icolumnsofthematrix Thekthleadingprincipalminorofannxnmatrixisthedeterminantofthekxkmatrixobtainedbydeletingthelastn kroseandcolumnsofthematrix 11 4SolvingNLPswithOneVariable SolvingtheNLPTofindtheoptimalsolutionfortheNLPfindallthelocalmaxima orminima ApointthatisalocalmaximumoralocalminimumfortheNLPiscalledalocalextremum Theoptimalsolutionisthelocalmaximum orminimum havingthelargest orsmallest valueoff x TherearethreetypesofpointsforwhichtheNLPcanhavealocalmaximumorminimum thesepointsareoftencalledextremumcandidates Pointswherea x b f x 0 calledastationarypointoff x Pointswheref x doesnotexistEndpointsaandboftheinterval a b Example21 ProfitMaximizationbyMonopolist Itcostsamonopolist 5 unittoproduceaproduct Ifheproducesxunitsoftheproduct theneachcanbesoldfor10 xdollars Tomaximizeprofit howmuchshouldthemonopolistproduce Example21 Solution ThemonopolistwantstosolvetheNLPTheextremumcandidatescanbeclassifiedasCase1checktellsusx 2 5isalocalmaximumyieldingaprofitP 2 5 6 25 P x existsforallpointsin 0 10 sotherearenoCase2candidates A 0hasP 0 5 0soa 0isalocalminimum b 10hasP 10 15 0 sob 10isalocalminimum Demandisoftenmodeledasalinearfunctionofprice ProfitisaconcavefunctionofpriceandSolvershouldfinetheprofitmaximizingprice SolvingonevariableNLPswithLINGOIfyouaremaximizingaconcaveobjectivefunctionf x thenyoucanbecertainthatLINGOwillfindtheoptimalsolutiontotheNLPIfyouareminimizingaconvexobjectivefunction thenyouknowthatLINGOwillfindtheoptimalsolutiontotheNLP TryingtominimizeanonconvexfunctionormaximizeanonconcavefunctionofaonevariableNLPthenLINGOmayfindalocalextremumthatdoesnotsolvetheNLP 11 5GoldenSectionSearch TheGoldenSectionMethodcanbeusedifthefunctionisaunimodalfunction Afunctionf x isunimodelon a b ifforsomepointon a b f x isstrictlyincreasingon a andstrictlydecreasingon b TheoptimalsolutionoftheNLPissomepointontheinterval a b Byevaluatingf x attwopointsx1andx2on a b wemayreducethesizeoftheintervalinwhichthesolutiontotheNLPmustlie Afterevaluatingf x1 andf x2 oneofthesecasesmustoccur Itcanbeshownineachcasethattheoptimalsolutionwilllieinasubsetof a b Case1 f x1 f x2 andTheintervalinwhichx barmustlie either a x2 or x1 b iscalledtheintervalofuncertainty Manysearchalgorithmsusetheseideastoreducetheintervalofuncertainty Mostofthesealgorithmsproceedasfollows Beginwiththeregionofuncertaintyforxbeing a b Evaluatef x attwojudiciouslychosenpointsx1andx2 Determinewhichofcases1 3holds andfindareducedintervalofuncertainty Evaluatef x attwonewpoints thealgorithmspecifieshowthetwonewpointsarechosen Returntostep2unlessthelengthoftheintervalofuncertaintyissufficientlysmall Spreadsheetscanbeusedtoconductgoldensectionsearch 11 6UnconstrainedMaximizationandMinimizationwithSeveralVariables ConsiderthisunconstrainedNLPThesetheoremsprovidethebasicsofunconstrainedNLP sthatmayhavetwoormoredecisionvariables IfisalocalextremumfortheNLPthen 0 Apointhaving 0fori 1 2 niscalledastationarypointoff IfHk 0 k 1 2 n thenastationarypointisalocalminimumforunconstrainedNLP If fork 1 2 n Hkisnonzeroandhasthesamesignas 1 k thenastationarypointisalocalmaximumfortheunconstrainedNLP IfHn 0andtheconditionsoftheprevioustwotheoremsdonothold thenastationarypointisnotalocalextremum LINGOwillfindtheoptimalsolutionifusedtosolvemaximizingconcavefunctionorminimizingaconvexfunctionproblems 11 7 TheMethodofSteepestAscent Themethodofsteepestascentcanbeusedtoapproximateafunction sstationarypoint Givenavectorx x1 x2 xn Rn thelengthofx written x isForanyvectorx theunitvectorx x iscalledthenormalizedversionofx Considerafunctionf x1 x2 xn allofwhosepartialderivativesexistateverypoint Agradientvectorforf x1 x2 xn written f x isgivenby Supposeweareatapointvandwemovefromvasmalldistance inadirectiond Thenforagiven themaximalincreaseinthevalueoff x1 x2 xn willoccurifwechooseIfwemoveasmalldistanceawayfromvandwewantf x1 x2 xn toincreaseasquicklyaspossible thenweshouldmoveinthedirectionof f v 11 8LagrangeMultipliers LagrangemultiplierscanbeusedtosolveNLPsinwhichalltheconstraintsareequalityconstraints ConsiderNLPsofthefollowingtype TosolvetheNLP associateamultiplier iwiththeithconstraintintheNLPandformtheLagrangian forwhichthepointsforwhichTheLagrangemultipliers icanbeusedinsensitivityanalysis 11 9TheKuhn TuckerConditions TheKuhn TuckerconditionsareusedtosolveNLPsofthefollowingtype TheKuhn TuckerconditionsarenecessaryforapointtosolvetheNLP SupposetheNLPisamaximizationproblem IfisanoptimalsolutiontoNLP thenmustsatisfythemconstraintsintheNLP andtheremustexistmultipliers 1 2 msatisfying SupposetheNLPisaminimizationproblem IfisanoptimalsolutiontoNLP thenmustsatisfythemconstraintsintheNLP andtheremustexistmultipliers 1 2 msatisfying Unlessaconstraintqualificationorregularityconditionissatisfiedatanoptimalpoint theKuhn Tuckerconditionsmayfailtoholdat LINGOcanbeusedtosolveNLPswithinequality andpossiblyequality constraints IfLINGOdisplaysthemessageDUALCONDITIONS SATISFIEDthenyouknowithasfoundthepointsatisfyingtheKuhn Tuckerconditions 11 10 QuadraticProgramming Aquadraticprogrammingproblem QPP isanNLPinwhicheachtermintheobjectivefunctionisofdegree2 1 or0andallconstraintsarelinear LINGO ExcelandWolfe smethod amodifiedversionofthetwo phasesimplex maybeusedtosolveQPPproblems Inpractice themethodofcomplementarypivotingismostoftenusedtosolveQPPs 11 11 SeparableProgramming ManyNLPsareofthefollowingform Theyarecalledseperableprogrammingproblemsthatareoftensolvedbyapproximatingeachfj x andgij xj byapiecewiselinearfunction Toapproximatetheoptimalsolutiontoaseparateprogrammingproblem solvethefollowingapproximationproblemFortheapproximationproblemtoyieldagoodapproximationtothefunctionsfiandgj k wemustaddthefollowingadjacencyassumption Forj 1 2 n atmosttwo j k scanbepositive 11 12TheMethodofFeasibleDirections Thismethodtakesthesteepestascentmethodofsection12 7intoacasewheretheNLPnowhaslinearconstraints Tosolvebeginwithafeasiblesolutionx0 Letd0beasolutionto Chooseournewpointx1tobex1 x0 t0 d0 x0 wheret0solvesLetd1beasolutiontoChooseournewpointx2tobex2 x1 t1 d1 x1 wheret1solves Continuegeneratingpointsx3 xkinthisfashionuntilxk xk 1orsuccessivepointsaresuf
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025财务人员劳动合同范本(标准版)
- 2025年常年业务代理合同协议
- 工程门窗安装合同(标准版)
- 2025年LED显示屏设备购销合同范本
- 全国浙教版信息技术八年级上册第一单元第5课《在线应用的实践》说课稿
- 7.4 李飞飞与ImageNet数据集说课稿-2025-2026学年小学信息技术(信息科技)小学版(2024)人工智能通识(清华大学版)
- 非本人签字的保险合同
- 道路施工合同
- 2025面料采购合同范本
- 2025合伙人共同经营货车合同范本
- 《AI客户服务与管理(慕课版)》 课件全套 -项目1-8 客户服务概述-客户服务质量管理
- GB/T 6730.23-2025铁矿石钛含量的测定硫酸铁铵滴定法
- 妊娠合并心脏病患者护理常规
- 成人重症患者人工气道湿化护理专家共识解析与临床应用
- 小学英语外研版(一年级起点)1-12册单词(带音标可直接打印)
- 数字化转型对咨询业的影响
- 成人床旁心电监护护理规程
- 2025至2030中国显微镜物镜行业发展趋势分析与未来投资战略咨询研究报告
- 水利水电工程施工现场的应急预案
- 2025春季学期国开电大专科《刑事诉讼法学》一平台在线形考(形考任务一至五)试题及答案
- 汉语教程第二册教案
评论
0/150
提交评论