可调稳压电源资料.doc_第1页
可调稳压电源资料.doc_第2页
可调稳压电源资料.doc_第3页
可调稳压电源资料.doc_第4页
可调稳压电源资料.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(电源电路图)主要元气件参数资料: 尽管LM317我们已经非常熟识了,但还是翻阅一下LM317的PDF资料比较稳妥,其中几个比较重要的参数如下: 入与输出端最高压差为:40V(很多人误认为是输入最高电压为40V); 入与输出端最小工作压差:3V; 出电压范围:1.25V-37V范围内连续可调(其实只要保证前一项条件,其输出范围的上限是可以扩展的); 大输出电流:1.5A(LM317T TO-220封装); 出最小负载电流:5mA; 准电压VREF:1.25V; 作温度范围为:0-70; 封装引脚排列如下图所示: 仅供参考 工作原理: 如图2所示,220V市电通过S1和F1连接到变压器的输入端,经过变压后分别输出:18V、8V、10V、3V(其中10V和3V绕组是自己以手工穿线的方式加绕的)四组电压,为了降低LM317T的功耗提高电源效率,采用了2个继电器的3级换档电路,换档电路如图6所示,电源输出电压V+加在W2的两端,当W2的滑动触片上获得的分压低于U4的VREF(2.5V)电压时,U4的K、A之间只有微弱的维持电流,J1因得不到足够高的工作电压,其常开触点断开,8 VAC绕组通过J1和J2的常闭触点对后级电路供电;当W2的滑动触片上获得的分压高于U4的VREF(2.5V)电压时,U4的阴极电流剧增使J1得到足够工作电压,其常开触点吸合,18 VAC绕组通过J1常开触点和J2的常闭触点对后级电路供电。由W3、J2和 U5构成的另一级换档电路工作原理类同(可能有人会说换档电路也可以用运放来实现,当然是可以的,只是电路要复杂一点,要是做产品需要考虑成本我会用运放,但偏 偏我是懒人不喜欢做复杂的事)。经过换档输出依次得到8VAC、18 VAC、26 VAC电压,经过D1-D4整流,C1、C2滤波后对应得到:11.3V、25.5V、36.8V三档电压。由U1、R1、R2、W1组成LM317T的典型稳压电路,D5、D6构成LM317T防短路保护电路。其输出电压计算公式为: VoVREF1+(W1+R2)/R1-2.5V 式中减2.5V是因为W1的低端没有接V-上,而是接在由U3(TL431)和R6构成的-2.5V基准上。变压器3V绕组经过DB2和C6整流滤波后得到4.2V左右的直流电压,该电压正端与地相连形成负电压,该电压通过限流电阻R6加在U3上,这里U3(TL431)接成了图5中第一种典型应用电路,故VKA=VREF=-2.5V基准。图2中Q1、U2A、R3、R4、R5、W2等构成恒压至恒流自动转换电路,其工作原理如下,W2与R7串联后连接在V-与-2.5V基准上,W2的滑动触片经过分压后向U2A(LM358)的同相输入端提供一个可设定的基准电压,当电源输出端连接负载后,通过R3对电流进行取样,由R5送至U2A(LM358)的反相输入端,当输出电流时,R3上的电压降,U2A(LM358)的反相输入端电压,当U2A(LM358)反相输入端电压低于U2A(LM358)同相输入端的设定电压时(即电流超出设定值),U2A(LM358)输出高电平通过R4加到Q1的基极上,使Q1的ICE,则流过W1的电流W1两端的电压,对应LM317T的输出电压,流过负载的电流,这时电源由原来的恒压状态转换为恒流状态,并且保持输出电流等于设定电流,调节W2可设定输出的恒定电流值,其最大输出恒定电流计算公式为: 率有限,另LM317T也没有增加扩恒定电流为1.6A左右(若需要增大输出电流请自己修改显示装置 基于ICL7107的数显电压显示电路简单可靠,虽然它只是三位半的AD转换器,但是已经可以满足日常的电压测量或者电压显示的要求,所以这种电路应用非常广泛,它的具体电路原理图如图13所示。 图13 基于ICl7107的数显电压显示电路原理图ICL7107是一种内置程序的芯片,所以可以直接使用,免去了编程的麻烦。ICL7107本身带有段式输出,直接连接到LED上就可以显示了,显示用的数码管应为共阳极数码管。因为本设计不需要用到20V以上的电压值,所以此数显电压表的量程为0-19.99V。ICL7107芯片的最大量程可以到达199.9V,如果需要用到其他的量程,可以通过修改输出端电阻的参数来达到目的。3.5.1 参数的计算系统时钟由IC的38、39、40脚决定。内部振荡频率为48Hz,显示每秒刷三次。 振荡器频率:fosc = 0.45/RC Cosc 50pF Rosc 50Kfosc = 48K Hz (典型值)振荡周期:Tosc = RC/0.45 所以,38脚的C4取100pF,39脚的R5取100K。积分电路由IC的27、28脚决定。 积分时钟频率:Fclock = Fosc / 4 积分周期:Tint = 1000 (4/Fosc) = 1000 (4/48K) = 83.3ms 满量程模拟输入电压:Vinfs = 200mV (典型值) 最佳积分电流:Iint = 4uA 积分电压:Vint = 2V 积分电阻:Rint = Vinfs / Iint = 200 mV/ 4uA = 50K 积分电容:Cint = (Tint)(Iint) / Vint = 83.3ms 4uA / 2 = 0.166 uF 所以,27脚C3取0.22uF, 28的R4取47K。C2用于防止系统噪音的影响以及过载输入时电路的恢复,29脚的C2取0.47uF。 参考电容:0.1uF Cref 1uF C1为参考电容,我们取0.1Uf。电阻R2用于调整参考电压,参考电源为0200mV可调。R3用于电压校准。 参考电压与输入电压的关系为:Vin = 2Vref 如果要求电压表的量程0199.9mV,参考电压应设置为100mV。 如果需要需要测量的电压大于200mV,就要通过分压电路来实现。由于我们电源的指标是512V,所以要求电压表的量程为020V。 下面以20V来进行分压电阻(Rx)的计算,这里我们设定R4形成的参考电压为100mV,R2为1K,落在R2上的电压降为2100mV = 0.2V,Rx计算如下:为了方便电阻选择,选用100 K电阻,其误差可通过调整R2来弥补。仅供参考 3.5.2 元件的选择制作时,显示用的数码管为共阳型,2 K可调电阻最好选用多圈可调精密电阻,分压电阻选用误差较小的金属膜电阻,其他器件选用正品即可。R1选用100K的金属膜电阻,R2选用2K的多圈可调精密电阻,R3选用24K的金属膜电阻,R4选用1K的多圈可调精密电阻,R5选用47K的金属膜电阻,R6选用100K的金属膜电阻。C1选用0.22uF的CCB电容,C2选用0.47uF的CCB电容,C3选用0.1uF的陶瓷电容,C4选用100 pF的CCB电容。3.5.3 ICL7107的校准首先,先校准参考电压,用万用表测IC的35和36之间的电压,是否为100mV,如不是,则需要调节电位器R4使两端电压为100mV。然后,用万用表测电源的输出,如9.50V,然后通过调节电位器R2,使LED上的数值与万用表上的一致。这样,校准工作就算完成了。经过校准后,ICL7107和万用表的绝对误差只有0.01V。用LM317集成稳压模块制作一个+5V的电源,然后用一只NPN三极管,两只电阻,一个电感来进行信号放大,把芯片38脚的振荡信号串接一个20K56K的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论