拉普拉斯变换在自动控制领域中的应用.doc_第1页
拉普拉斯变换在自动控制领域中的应用.doc_第2页
拉普拉斯变换在自动控制领域中的应用.doc_第3页
拉普拉斯变换在自动控制领域中的应用.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

拉普拉斯变换在自动控制领域中的应用 ;拉普拉斯变换(Laplace)及其反变换是由复变函数积分引导出的一个非常重要的结论它在应用数学中占有很重要的地位.拉普拉斯变换和傅里叶(Fourier)变换都是积分变换,函数f(t)的拉普拉斯变换,就是对于函数的傅里叶变换,没有本质上的不同.它们都是解微分方程和积分方程的有力工具,但拉普拉斯变换比傅里叶变换有着更为广泛的应用. 一个定义在区间的函数f(t),它的拉普拉斯变换式F(s)定义为 (1) 式中为复数,F(s)称为f(t)的原函数f(t)。这种由F(s)到f(t)的变换称为拉普拉斯反变换,其定义为 (2) 式中c为正的有限常数. 在自动控制理论中,首先建立系统的动态数学模型一一微分方程,然后求解方程便可得到系统的动态过程,其常用的求解方法就是拉普拉斯变换. 传递函数是在应用拉普拉斯变换求解线性常系数微分方程中构造出来的,是一个派生的概念,但对控制理论而言是极为重要的概念. 传递函数定义为:零初始条件下线性定常系统输出量拉普拉斯变换与输入量拉普拉斯变换之比. 设线性定常系统的微分方程为, (3) 式中:c(t)为输出量,r(t)为输入量,均为由系统结构参数决定的常系数。 设初始值均为零,对式(3)两端进行拉普拉斯变换,得系统方程则系统传递函数为 (4) 式中:分了为象方程的输入端算了多项式,分母为输出端算子多项式亦即微分方程的特征式. 传递函数是系统的s域动态数学模型,而且是更具有实际意义的模型.在不需要求解微分方程的情况下,直接利用传递函数便可对系统的动态过程进行分析和研究.应该指出,传递函数是由于拉普拉斯变换导出的,而拉普拉斯变换是一种线性积分运算,因此传递函数的概念只适用于线性定常系统.传递函数取决于系统内部的结构参数,它仅表明一个特定的输入、输出关系.同一系统,取不同变量作输出,以给定值或不同位置的干扰为输入,传递函数将各不相同.传递函数是在零初始条件下进行的,因此它只是系统的零状态模型,而不能完全反映零输入响应的动态特征. 动态数学模型,是对控制系统进行理论研究的前提.模型一旦建立,便可运用适当的方法对系统的控制性能作全面的分析和计算.对线性定常系统,用的方法有时域分析法、根轨迹法和频率法,现在我们仅讨论时域分析法. 时域分析法根据系统微分方程,用拉普拉斯变换直接解出动态过程,并依据过程曲线及表达式,分析系统的性能,方便、快捷、准确. 设单位反馈系统的开环传递函数为: (5) 从中可以求该系统对单位环跃输入信号的响应,也可以求该系统的性能指标上升时间和最大超调量. 由于这单的闭环传递函数为非标准形式(带有零点),故求时域响应不能套用己有的公式,求性能指标也不能套用己有的公式,只能按定义求出.由于是单位反馈系统,则根据开环传递函数可得传递函数闭环为: (6) 根据闭环特征方程可知,特征根为共轭复根,故可按振荡形式将C(s)展成如下部分分式: (7)则 (t0). (8) 由于该系统的闭环传递函数不是标准形式(带零点),故不能用一阶系统欠阻尼的求指标公式,只能根据性能指标的定义,由输出响应表达式来推导. (9) 于是其中 故 (10) 为了求最大超调量,首先要求出峰值时间.为此令对时间的一阶导数为零,可得出 (11) 其中由此可得出 (12)拉普拉斯变换法在非稳态导热中的应用 拉普拉斯变换有许多非常好的性质,如线性性质、微分性质、积分性质、位移性质、延迟性质、初值定理和终值定理、卷积定理等。这些性质在解题时非常重要。在利用拉普拉斯变换求解导热问题时,关键的一步是把变换后的函数从复变量s区域变回到时间变量t区域的逆变换。而许多逆变换都可直接或利用性质转化之后通过查拉普拉斯变换表得到,这使得该方法在工程技术中有广泛应用。 利用拉普拉斯变换求解非稳态导热问题的一般步骤: (1)根据问题建立偏微分方程模型; (2)将温度看做时间t的函数,对方程及定解条件关于t取拉普拉斯变换,把偏微分方程和定解条件化为象函数的常微分方程的定解问题; (3)解常微分方程,求出象函数U(x, s); (4)取拉普拉斯逆变换,求出温度函数u(x,t)。 .1 边界热流为常数的非稳态导热问题一个半无限大物体(x0)的初始温度为零,当时间t0时,在x=0的边界上有恒定热流的作用,试求t0时物体中的温度分布。 分析 设u表示物体的温度,x表示坐标,t表示时间,表示导热

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论