诺贝尔化学奖 整理.docx_第1页
诺贝尔化学奖 整理.docx_第2页
诺贝尔化学奖 整理.docx_第3页
诺贝尔化学奖 整理.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2013年10月9日,2013年诺贝尔化学奖在瑞典揭晓,犹太裔美国理论化学家马丁卡普拉斯(Martin Karplus)、美国斯坦福大学生物物理学家迈克尔莱维特(Michael Levitt)和南加州大学化学家亚利耶瓦谢尔(Arieh Warshel)因给复杂化学体系设计了多尺度模型而分享奖项。瑞典皇家科学院发表的公告指出,化学家们在做实验的时候,过去常常会用塑料棒和小球来展示化学模型,今天化学家们开始使用计算机来展示各种模型,而且当今化学领域里的重要进展都离不开计算机的帮助。上个世纪七十年代卡普拉斯、莱维特和瓦谢尔等科学家所做的研究工作为今天的研究工作奠定了坚实的基础,帮助人们加深了对化学过程的理解和预测2012诺贝尔化学奖授予给 Robert J. Lefkowitz 与 Brian K. Kobilka。获奖理由为“ G蛋白偶联受体上的成就”。G蛋白偶联受体在基础科学和应用科学研究而言当然是比较重要的,特别是药物发现方面,30%的药物是靶向这些蛋白的。2011年诺贝尔化学奖授予以色列科学家达尼埃尔谢赫特曼,以表彰他发现准晶体。当时这一发现违背当时科学界关于固体只有晶体和非晶体的分类理论,但谢赫特曼坚持维护自己的观点,以致被当时所在的科研小组除名。准晶体,是一种介于晶体和非晶体之间的固体。准晶体具有与晶体相似的长程有序的原子排列,但是准晶体不具备晶体的平移对称性。1因而可以具有晶体所不允许的宏观对称性。准晶体,亦称为“准晶”或“拟晶”,是一种介于晶体和非晶体之间的固体结构。在准晶的原子排列中,其结构是长程有序的,这一点和晶体相似;但是准晶不具备平移对称性,这一点又和晶体不同。普通晶体具有的是二次、三次、四次或六次旋转对称性,但是准晶的布拉格衍射图具有其他的对称性,例如五次对称性或者更高的六次以上对称性。11982年4月8日,谢赫特曼首次在电子显微镜下观察到一种“反常”现象:铝锰合金的原子采用一种不重复、非周期性但对称有序的方式排列。2009年科学家们在俄罗斯东部哈泰尔卡湖获取的矿物样本中发现了天然准晶体,这种名为icosahedrite(取自正二十面体)的新矿物质由铝、铜和铁组成Al63Cu24Fe13;瑞典一家公司也在一种耐用性最强的钢中发现了准晶体,这种钢被用于剃须刀片和眼科手术用的手术针中在实际上,准晶体已被开发为有用的材料。例如,人们发现组成为铝铜铁铬的准晶体具有低摩擦系数、高硬度、低表面能以及低传热性,正被开发为炒菜锅的镀层;Al65Cu23Fe12十分耐磨,被开发为高温电弧喷嘴的镀层。准晶体具有独特的属性,坚硬又有弹性、非常平滑,而且,与大多数金属不同的是,其导电、导热性很差,因此在日常生活中大有用武之地。科学家正尝试将其应用于其他产品中,比如不粘锅和发光二极管等。另外,尽管其导热性很差,但因为其能将热转化为电,因此,它们可以用作理想的热电材料,将热量回收利用,有些科学家正在尝试用其捕捉汽车废弃的热量2010年 美国科学家理查德-赫克,日本科学家根岸英一和铃木章因开发更有效的连接碳原子以构建复杂分子的方法获奖。“钯催化交叉偶联反应”研究领域这一技术让化学家们能够精确有效地制出他们需要的复杂化合物。如今,“钯催化交叉偶联反应”被应用于许多物质的合成研究和工业化生产。例如合成抗癌药物紫杉醇和抗炎症药物萘普生,以及有机分子中一个体格特别巨大的成员水螅毒素。科学家还尝试用这些方法改造一种抗生素万古霉素的分子,用来灭有超强抗药性的细菌。此外,利用这些方法合成的一些有机材料能够发光,可用于制造只有几毫米厚、像塑料薄膜一样的显示器。科学界一些人士表示,依托“钯催化交叉偶联反应”,一大批新药和工业新材料应运而生,这三名科学家的科研成果如今已经成为支撑制药、材料化学等现代工业文明的巨大力量。 钯催化反应的应用:对制药工业举足轻重诺贝尔化学奖委员会主席拉尔斯哲兰德说:“有人告诉我说,目前25%的合成药品都由这三种反应中的一种制成,因此,他们的发明对制药工业具有举足轻重的影响。钯具有非常神奇的属性,它可以让两个不同的碳原子连接在一起,使得它们更靠近并且在非常温和的环境下就能发生反应。”瑞典皇家科学院表示,科学家已经使用钯催化交叉偶联反应人工合成了最开始在海绵中发现的抗癌药物,目前,科学家已经开始进行临床测试。而且,科学家也使用该方法制造出了新的抗体和许多其他有用的药物,包括抗炎镇痛药物萘普生(NAPROXEN)等等。2009年万卡特拉曼-莱马克里斯南、托马斯-施泰茨和阿达-尤纳斯获得2009年诺贝尔化学奖。3人是因为“核糖体的结构和功能”的研究而获得诺贝尔化学奖。 2008年下村修(日本)马丁沙尔菲(美国)钱永健 (美籍华裔)因在发现和研究绿色荧光蛋白方面作出贡献而获奖2007年,德国马普弗利兹-哈伯研究所(Fritz-Haber-Institut der Max-Planck-Gesellschaft)化学家Gerhard Ertl格哈德 埃特尔因固体表面化学过程研究独得2007年诺贝尔化学奖表彰的是表面化学的突破性研究。这个领域对化工产业影响巨大,物质接触表面发生的化学反应对工业生产运作至关重要。同时,表面化学研究有助于我们理解各种不同的过程,比如为何铁会生锈,燃料电池如何发挥作用以及我们汽车中加入的催化剂如何工作。表面化学研究甚至可以解释臭氧层的破坏。此外,半导体产业的发展与表面化学研究也是息息相关。得利于半导体行业的发展,表面化学从20世纪60年代开始发展起来。Gerhard Ertl是最初觉察到这种新技术潜力的科学家之一。通过逐步的实验研究,他为表面化学开创了一种新的研究方法,即怎样用不同的实验步骤来描绘出一个完整的表面反应画面。这种方法需要高真空的实验装备,目的是用来观测单层原子和分子在金属等材料极纯表面上发生的行为。只有这样,才能测定到底哪种元素能够进入系统,而污染会损害所有的测量。正因如此,成功实验这一方法需要高度的精确性,以及将许多不同的实验技巧结合起来的能力。Gerhard Ertl开创了一种全新的实验学派, 证明了即使在如此高难度的领域也可以得到可靠的结果。他的远见卓识为现代表面化学研究奠定了基础。他的方法论不仅仅被应用于学术研究,还包括化学过程相关产业的发展。2006年罗杰科恩伯格 美国对真核转录的分子基础的研究2005在烯烃复分解反应方面做出卓越贡献的三位有机化学家法国人Yves Chauvin伊夫肖万,美国人RichardR.Schrock理查德施罗克和Robert H.Grubbs罗伯特格拉布分享了这一殊荣。烯烃复分解反应在金属化合物的催化作用下,烯烃里的碳碳双键会被拆散、重组,形成新分子,这种过程被命名为烯烃复分解反应,可以分为五种情况:开环复分解、开环复分解聚合、非环二烯复分解聚合、关环复分解以及交叉复分解反应烯烃在某些过渡金属(如钨、钼、铼、钌等)络合物的催化下,发生双键断裂,重新组合成新的烯烃的反应。又称烯烃易位反应该反应广泛应用在化学工业,主要用于研发药物和先进聚合物材料。学术界和工业界掀起了研究烯烃复分解反应、设计合成新型有机物质的热潮。新的合成过程更简单快捷,生产效率更高,副产品更少,产生的有害废物也更少,有利于保护环境,是“绿色化学”的典范。它在化工、食品、医药和生物技术产业方面有着巨大应用潜力。一些科学家正在用这种方法开发治疗癌症、早老性痴呆症和艾滋病等疾病的新药。它还拓展了科学家研究有机分子的手段,例如用于人工合成复杂的天然物质年,施罗克和他的合作者报告说,金属钼的卡宾化合物可以作为非常有效的烯烃复分解催化剂。这是第一种实用的此类催化剂,该成果显示烯烃复分解可以取代许多传统的有机合成方法,并用于合成新型有机分子。年,格拉布等人发现了金属钌的卡宾化合物也能作为催化剂。此后,格拉布又对钌催化剂作了改进,这种“格拉布催化剂”成为第一种被普遍使用的烯烃复分解催化剂,并成为检验新型催化剂性能的标准。2004年阿龙切哈诺沃阿夫拉姆赫什科(以色列)欧文罗斯(美国)发现了泛素介导的蛋白质降解2000年诺贝尔化学奖授予美国科学家艾伦黑格、艾伦马克迪尔米德和日本科学家白川英树,以表彰他们有关导电聚合物的发现(乙炔在1000摄氏度时导电)。导电聚合物是一种具导电性的高分子聚合物,又称导电塑胶与导电塑料,最简单的例子是聚乙炔。当高分子结构拥有延长共轭双键,离域键电子不受原子束缚,能在聚合链上自由移动,经过掺杂后,可移走电子生成空穴,或添加电子,使电子或空穴在分子链上自由移动,从而形成导电分子。常见的导电聚合物有、聚苯胺、聚吡咯、聚噻吩和聚对苯乙烯撑,以及它们的衍生物。机制:当聚合物之单体重复连接时,因为电子轨域相互影响,使能带变小,因此可以达到半导体,甚至导体的性质。另外由于共振结构,比起一般聚合物可以耐高温,并且拥有光电性质,像是导电率、电容率。用途和传统无机材料比起来,导电聚合物在制程上较简单,像是可以用旋转涂布或喷墨式,在原料和制程上都较便宜,初始投资(建厂)成本不用像无机材料需要十几亿美金以上,性质上则有可侥性,可制做成薄膜状,目前性质已可追上无定型硅晶材料。导电聚合物常被用于电力装置,例如电池中的电极,电解电容器及电子感应器,在导电聚合物之光子放射研究可能使导电聚合物在未来可用于发光二极管 (LED) 和平面显示器。导电聚合物亦可成为安装在纳米级电子装置内的“分子电线”。性质高导电度半导体特性(高载子迁移率)高光电导性可发冷光高对比之光电致变色特性应用导体、电极薄膜晶体管太阳能电池发光二极管变色玻璃、挡风玻璃聚乙炔1967年在日本东京工业大学进修的韩国边衡直博士于实验室制作聚乙炔时,加入超量的一千倍催化剂,使得本来该得到黑色粉末聚乙炔(顺式聚乙炔),却变成了银白色的薄膜(反式聚乙炔)。时任池田研究所助理的白川英树博士即据此结果开始研究聚乙炔。1976年,在美国化学家艾伦麦克德尔米德(Alan G. McDiarmid)与物理学家艾伦黑格(Alan J. Heeger)的邀请之下,白川到美国宾州大学进行访问。他们利用碘蒸气来氧化聚乙炔,之后在量测掺碘的反式聚乙炔之后发现导电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论