




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浅谈数学分析中的数学思想张广平(西北师范大学 数学与信息科学学院,甘肃 兰州 730070)摘要: 数学知识和蕴含于知识体系中的思想方法是极其丰富的,尤其是隐藏于数学知识背后的数学思想的价值不可忽视.本文对数学分析内容中的函数思想、极限思想、数形结合思想、化归思想进行初步的分析.关键词: 数学分析; 数学思想; 分析中图分类号: O17Discussion on Mathematical Ideas in Mathematics AnalysisZHANG Guang -ping(College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, Gansu, China) Abstract: Mathematical knowledge with mathematical ideas in knowledge is extremely rich, especially the value of mathematical ideas is not neglected in knowledge. In the part content this paper about function thought、 limit thought 、thought of combination of numeral and form and induction thought do initial exploration in mathematics analysis.Key words: mathematics analysis ; mathematical ideas; initial analysis一、 函数思想 函数概念和函数思想的提出和运用,使得变量数学诞生了,常量数学发展到变量数学,函数思想起了决定性作用.函数是数学分析的研究对象.函数思想就是运用函数的观点,把常量视作变量、化静为动、化离散为连续,将待解决的问题转化为函数问题,运用函数的性质加以解决的一种思想方法.在数学分析中,我们通常用来解决不等式的证明、方程根的存在性与个数、级数问题、数列极限等.例1 证明 当时,.分析 这是一个不等式证明问题,直接证明有一定难度,但是将此问题转化为函数问题的单调性,即可解决问题.证明 构造辅助函数,则,可证当 时,因此单调递增.又因为,所以当时, ,即原不等式成立.例2 判断的敛散性.分析 这是一个级数问题,该级数为交错级数.从函数的观点出发,化离散为连续,转化为函数问题,运用函数的性质,从而解决问题.解 该级数为交错级数,由莱布尼兹判别法知,要判断其敛散性,只需判断通项的绝对值=是否单调减少且趋于为.为此,将连续化,设,由于,当时,即在内单调递减.将特殊值为大于的自然数代入知,也递减且极限为,故此级数收敛.二、极限的思想极限的思想方法是近代数学的一种重要思想方法,数学分析就是以极限概念为基础、极限理论为主要工具来研究初等函数的一门学科.极限是研究无限的有力工具,“极限”揭示了常量与变量、有限与无限、直线与曲线、匀速运动与变速运动对立统一的关系.极限的思想方法贯穿于数学分析课程的始终,一方面利用极限的思想给出了连续函数、导数、定积分、无穷小(大)量、级数的敛散性、多元函数的偏导数、广义积分的敛散性、重积分、曲线积分、曲线弧长、曲面积分等的概念,数学分析中几乎所有的概念都离不开极限的思想.另一方面在闭区间列上的区间套定理体现了极限的思想,泰勒定理中的泰勒公式就是利用多项式函数去逼近已知函数等.学习者以”极限理论”为工具,以现实具体的问题为背景,从具体到抽象,特殊到一般的去理解概念及定理的本质,可以增强分析和解决问题的能力.有时我们要确定某一个量,首先确定的不是这个量的本身而是它的近似值,而且所确定的近似值不仅仅是一个而是一连串趋向于准确值的近似值,从而我们把那个量的准确值确定下来,这就是极限思想.这个无限过程是没完没了的,永无终结的,同时它又使人们看到了无限变化过程的”终结”.下面仅采用极限的思想给出定积分的概念.例3 设为闭区间上的连续函数,且.求由曲线、 轴、直线与所围成的平面图形的面积.解 (1)在上将曲边梯形分成个小曲边梯形.(2) 当分割的分点较多时,且当分割的较细密时,每个小曲边梯形都可看成小矩形.第个小曲边梯形面积,其中.此时.(3) 当分割的分点无限增大时,即当无限趋近于时,就无限地趋近于曲边梯形的面积,故.三、数形结合的思想 数学是研究空间形式和数量关系的科学,而空间形式和数量关系之间往往存在密切的联系,又有各自特点.数形结合思想方法,就是充分利用形的直观性和数的规范性,通过数与形的联系转化来研究数学对象和解决数学问题.具体包括:数转化为形的思想;形转化为数的思想.这种方法使得复杂问题简单化、抽象问题具体化、形象化、直观化,化难为易,最终找到最优解决方案.数形结合的思想在数学分析课程中的应用广泛,很多抽象问题中都蕴含着某种几何意义,借助几何图形,对抽象问题进行几何解释,使抽象问题结合图形更容易深入理解,更容易掌握其最本质的知识.比如:极限、曲线的渐近线、导数与微分、二元函数偏导数与全微分、定积分与重积分、反常积分(无穷积分与瑕积分)、函数的单调性、函数的凹凸性等概念的几何意义,对于确切理解并正确掌握这些基本概念是非常重要的,同时为解决各种实际问题提供了多样化的方法.又比如:闭区间上连续函数基本性质(介值性定理、根的存在定理)、微分中值定理(罗尔定理、拉格朗日定理、柯西定理)、积分中值定理、费马定理、隐函数存在唯一性定理等几何意义,不论对定理的深入理解,还是对启发证明定理结论方面有很大帮助.例4 下面仅谈谈几何图形对拉格朗日定理的内容的理解及证明所起的作用.为了叙述的方便,首先将拉格朗日定理陈述如下:若函数满足如下:在闭区间上连续;在开区间内可导,则在内至少存在一点,使得.它的几何意义是若一条曲线在上连续,曲线上每一点都存在切线,则曲线上至少存在一点,过点的切线平行于割线图1.此定理的证明关键在于运用其几何意义 ,考虑到这个定理比罗尔定理少了一个条件,构造辅助函数使其满足罗尔定理的要求,即满足函数在端点的取值相同,最后用罗尔定理得出最后的结论.因此,想办法构造一个辅助函数,使得在上连续,在内可导并且.观察图1可知,割线与曲线有两个交点与,要使 ,只需使的图像经过两点,可取为曲线纵坐标与割线纵坐标之差.其中,曲线的方程为,割线的方程为,可见,几何图形在此定理的证明起到关键的作用.图(1)四、化归思想在研究数学问题时,将所面临的未解决或待解决的原问题,通过某种转化过程,归结到一类已经解决的新问题中去,最终原问题得到解答的一种思维方法称为化归思想,基本思维过程如图:原问题已解决解答新问题化归的思想在数学分析中应用十分广泛,挖掘出隐藏于数学知识背后的化归的数学思想,可深化理解数学分析中知识体系间的关系以及处理一些问题的方法,提高数学综合能力.如:海涅定理揭示了函数极限与数列极限的关系,一方面可利用海涅定理和数列极限的有关性质得出并证明函数极限的所有性质,另一方面将数列极限问题转化为函数极限问题来处理,把某些数列不等式极限转化为函数不等式极限,进而用洛比达法则或两个重要极限,求出其极限.微分中值定理揭示函数与其导数关系,将函数问题转化为导数问题,进而以导数为工具学习函数的单调性、凹凸性、极值、最值,解决有关最值与极值的实际问题.微积分基本定理实现了微分与积分的转化.重积分、曲线积分、曲面积分、广义积分的计算问题都转化为定积分的计算问题,另外求定积分及不定积分的两种基本方法换元法和分步积分法都体现了化归的思想.极限与级数之间的转化,如:数列的极限问题可转化为级数收敛的必要条件、级数收敛的定义转化为极限的方式来定义.数项级数问题转化为函数项级数问题,进而运用逐项求导、逐项求积等性质计算.格林公式揭示出平面区域上的二重积分与沿着该区域的闭曲线的第二型曲线积分可以相互转化等.化归思想的关键在于选择“转化的方向”,下面举例说明化归思想的应用.例5 求 数列极限.分析 这是一个数列极限问题,利用数列极限的理论方向来解决这个问题有一定难度.由海涅定理可知将此问题转化为函数极限问题,由洛比达法则可求出结果.解 .例6 求数项级数.分析 利用数项级数与函数项级数之间的关系,将无法直接求和的数项级数问题转化为求幂级数和函数的问题,进而用熟悉的逐项求导、求积分方法加以解决.解 设,又在内一致收敛, ,=1.参考文献 :1 李福兴. 解读中的数学思想方法J. 广西贺州学院学报, 2010, 26(3):109-112.2 林远华. 数学分析课程中的数学思想方法研究J. 广西河池师专学报, 2001, 21(2):31-34.3 华东师范大学数学系. 数学分析(第三版)(上、下册)M. 北京:高等教育出版
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年互联网+日化洗涤行业研究报告及未来发展趋势预测
- 商场国庆节前安全培训课件
- 商场商家安全用电培训课件
- 2025年控制系统行业控制系统数字化应用前景报告
- 2025年清洁能源行业风能发电技术前景研究报告
- 岱山县2025浙江舟山市岱山县事业单位紧缺专业人才招聘14人笔试历年参考题库附带答案详解
- 压力容器安全标准培训课件
- 安徽省2025年安徽省自然资源厅直属事业单位招聘9人笔试历年参考题库附带答案详解
- 大洼区2025年辽宁盘锦市大洼区招聘事业单位工作人员笔试考试笔试历年参考题库附带答案详解
- 介休市2025山西晋中介休市事业单位招聘133人笔试历年参考题库附带答案详解
- 《传统书画装裱与修复中材料的选择与运用》
- 2024ESC心房颤动管理指南解读
- 防洪排涝工程合同范本有效
- 高血压病基层诊疗指南
- 医院视频监控系统维保方案
- 门诊护士课件教学课件
- 《大学生的人际关系》课件
- 职务侵占罪培训
- 中式烹调师技能等级认定四级理论知识试卷
- DB65-T 4784-2024 冰川范围调查技术规范
- 幼儿园礼仪小天使《借物品》教学课件
评论
0/150
提交评论