




免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
“和倍”“差倍”问题教学设计教学内容:人教版小学数学教材六年级上册第4142页例6及相关练习。教学目标:1会通过线段图理解题意,并根据关键句弄清数量关系设未知数,能列方程解答稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题,理解解答思路,掌握解题方法。2从解题过程中切实理解用方程解应用题的优越性,提高学生列方程解决问题的自觉性与积极性。3让学生对生活中的有关数学信息予以选择、加工,进而解决问题,感悟稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题的内在联系,培养学生分析问题、解决问题的能力。教学重点:列方程解答稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题,理解解题思路,掌握解题方法。教学难点:正确分析题目中的数量关系,会设未知数。教学过程:一、复习旧知,引入问题1根据题意,写出关系式。(1)白兔的只数是灰兔的;(2)美术小组的人数是航模小组的;(3)小明的体重是爸爸的;(4)男生人数是女生的一半。2根据线段图,列出方程想一想:线段图相同,列出的方程为什么不同?你为什么这样列方程?你能用一句话概括两幅线段图中甲和乙的关系吗?3教师说明:今天我们就要来学习解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题。【设计意图】准备题的设置,是从学生已有知识经验出发的。一方面复习了找单位“1”、分析数量关系和如何列方程,分解了本课的重难点;另一方面,为后面环节的对比分析、沟通联系做好铺垫。二、探索交流,解决问题(一)出示例61课件出示例6图片。2提问,你从图中获得了哪些信息?(1)知道了我们班全场的总得分;(2)知道了下半场得分是上半场的。3想一想,根据已有的信息,你能提出哪些数学问题?引导学生提出:上半场和下半场各得多少分?4请学生概括图片信息,编出完整的应用题。引导学生概括:六(1)班参加篮球比赛,全场得分为42分,下半场得分只有上半场的一半。六(1)班上半场和下半场各得多少分?【设计意图】这一环节主要是在例题情景中培养学生捕捉信息和语言概括的能力,明确例题中的已知条件与问题,为后面的解答做好铺垫。(二)解答例题1画线段图。(1)根据题意,请学生把线段图画在草稿本上,其中一个学生黑板上板演。(2)对照板演的同学,检查自己的线段图有什么不足之处。2独立解答。(1)学生尝试独立解答,教师巡视,收集学生不同的解题方法,出示在实物投影上。(2)解题方法预设:方法一:方法二: (3)学生逐题讲解解题思路,教师配合线段图加以说明。3教学用方程解答例6。(1)想一想:如果用方程来解答这道题目,你能在题中找出怎样的等量关系?根据学生的回答板书:上半场的分数+下半场的分数; 下半场的分数=上半场的分数;上半场的分数=下半场的分数;下半场的分数=上半场的分数;(2)说一说:根据这些等量关系,应该把哪个量设为未知数?另一个量又可以怎样表示?把上半场设为分,那么下半场可以表示为分或分;把下半场设为分,那么上半场可以表示为分或分。(3)做一做:用方程完整地解答例题,并请学生板演。学生用方程解答预设:解:设六(1)班上半场得分为,则下半场得分为。解:设六(1)班下半场得分为,则上半场得分为。解:设六(1)班上半场得分为,则下半场得分为。解:设六(1)班下半场得分为,则上半场得分为。(在PPT中呈现教材中的解答过程。)(4)如何验证方程的结果是否正确?(5)比一比:此题不同的列方程解答方法的联系和区别是什么?教师引导:从不同的等量关系出发,我们可以列出不同的方程,关键是要从题目信息中找准数量关系。(三)小结通过刚才的例题的学习,我们知道了如何求稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题的解答方法,我们也可以把今天学习的这类题型叫做“和倍”问题。在解题时,我们应先找准题目中的等量关系,设其中一个量为未知数,用两种量之间的关系表示出另一个量,再列出方程进行解答。【设计意图】线段图是解决问题的一种重要手段,尤其到了六年级,线段图的教学尤为重要。教师在教学解决问题时,要尽可能给学生创造画线段图的机会,为分数应用题教学分散难度。例6的教学,有线段图做铺垫,学生并不困难,因此,可以放手让学生自己解决。但本节课的重点是如何用方程解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题,所以教师要适时把学生引导到用方程解决问题的思路上来。不但要鼓励学生用多种思路设未知数列方程,还要能引导学生理清思路。三、巩固练习,强化提高(一)基本练习1完成练习九第2、4题。2鼓励学生列方程解答。(二)拓展提高1把练习九第3题进行适当改编,拓宽学生思路。学校美术小组的人数是航模小组人数的,美术小组比航模小组多15人,美术小组和航模小组各多少人?2比较这一题与前面的习题有什么不同?3小结:前面的习题称为“和倍”问题,这题我们可以称之为“差倍”问题。我们在学习数学时,应该举一反三,做到融会贯通。【设计意图】习题设计上,我们需要做到循序渐进。练习九的第1、2、4、5题基本上同例题一样属于“和倍”问题,鼓励学生用方程解答,不但强化了这节课的重点,也为后续的学习奠定了基础。其次,把练习九的第3题稍加改动,变成“差倍”问题,旨在培养学生仔细审题的习惯,同时注重培养学生举一反三的能力。练习中基本上采用全部放手的做法,让学生独立分析解答,教师引导、鼓励学生完成学习任务,给学生营造自主的学习氛围。四、总结延伸,布置作业1这节课你有什么收获?2列方程解答应用题要注意哪些问题?3完成教材第44页练习九第1题、第5题。工程问题教学设计教学内容:人教版小学数学教材六年级上册第4243页例7及相关练习。教学目标:1让学生经历用“假设法”解决分数工程问题的过程,理解并掌握把工作总量看作单位“1”的分数工程应用题的基本特点、解题思路和解题方法。 2通过猜想验证、自主探究、评价交流等学习活动,培养学生分析、比较、综合、概括的能力。教学重点:认识工程问题的特点,掌握其数量关系、解题思路和方法。教学难点:学会用“工程问题”的方法解决实际问题。教学准备:课件。教学过程:一、复习旧知师:今天,我们将继续解决生活中的数学问题。先来看看,你能解决下面的问题吗?(ppt课件出示。)(1)修一条360米的公路,甲队修12天完成,平均每天修多少米?36012=30(米)。师:你是怎样列式的?为什么?(教师板书:工作总量工作时间工作效率。)(2)修一条360米的公路,甲队每天修18米,多少天能完成?36018=20(天)。师:你是怎样列式的?为什么?(教师板书:工作总量工作效率工作时间。)(3)加工一批零件,计划8小时完成,平均每小时加工这批零件的几分之几?18=。(师:你是根据什么来列式的?)(师小结:不知道工作总量时,我们可以用单位“1”来表示,相对应的工作效率就用时间分之一来表示。)(4)一项工程,施工方每天完成,几天可以完成全工程?1=6(天)。(师:你又是根据什么来列式的?)【设计意图】小学生学习数学的过程就是新知识同原有知识相互作用,发展形成新的数学认识结构的过程。因此,在复习准备阶段,设计了上述4道基本练习题,帮助学生激发原有的知识记忆,使学生能进一步熟练运用工作总量、工作时间、工作效率这三个量之间的关系解决实际问题,并适当渗透工作总量、工作效率不是具体的数量时应该怎样表示,为学习新知做好铺垫。二、创设情境,设疑导入为了建设新农村,各地都在进行乡村公路的建设。张村也准备新修一条公路。两个工程队,一队单独修12天完成,二队单独修要18天完成。(ppt出示。)师:从以上条件,我们可以获得什么信息?(预设:一队每天修这条公路的;二队比一队多用6天完成;二队每天修这条公路的)师:假如你是负责人,你会承包给谁?为什么?如果要修得又快又好,怎么办?(预设:让甲队修;可以让两个队一起修。)师:如果两队合修,多少天能修完?(PPT出示完整题目。)张村准备新修一条公路。两个工程队,一队单独修12天完成,二队单独修要18天完成。如果两队合修,多少天能修完?【设计意图】教材中的例题设计了学生熟悉的修路情境,合理利用情境激发学生的学习兴趣,逐步展开,并在设疑中生成有教学价值的问题“如果两队合修,多少天能修完”,展开新课教学。三、猜想验证,合作探究(一)猜想。师:请同学们先猜一猜两个队一起修路,大约几天能修完?(教师随机板书学生所说的天数。)师:在这些天数中,哪些天数可以排除?你是怎样想的?(得出“两队合修的天数比12天少”的结论。)(二)讨论。师:到底是几天呢?观察题目,想一想,要知道合修的时间,需要知道什么?(预设:需要知道工作总量和工作效率。)师:可这里的工作总量(也就是道路全长)是未知的,怎么解决?可以假设道路全长是多少?根据学生的回答,老师随机板书假设的长度(预设单位“1”,如36千米等。如果是假设具体数量,考虑12和18的公倍数会方便些)。师:请你选择其中一个道路全长的值,试一试解决这道题吧。(三)验证,辨析各种解法。1学生用假设法解题,老师巡视,抽取不同假设的同学板书演示。2全班交流评价各种方法,让学生说说自己解决的思路与方法。预设:(1)假设道路全长36千米,36(3612+3618)7.2(天);(2)假设道路全长720米,720(72012+72018)7.2(天);(3)假设道路全长为单位“1”,1(天)。对于假设具体数据的解法,分析一种,让学生说一说数量关系。(先分别求出两队的效率,再用工作总量除以合作工作效率,即两队效率之和,求出合作修路所需的工作时间。)对用单位“1”及分率解题的方法,老师结合PPT进行重点追问:这里的1指什么,各指什么?代表什么?为何用1?请学生结合工作总量、工作效率与工作时间的关系说一说。(同桌互相讨论这种解法的思路。)预设:如果有同学用1(112+118),肯定并说明可以直接写作的形式。【设计意图】猜想与验证是学生自主探究的有效方法,让学生发散思维,在猜测中预测结果,提高学生参与验证的热情。另外,因为学生的认知基础不同,允许验证的方法多样化,对于正确的答案都能给予肯定,让学生享受成功的喜悦。(四)小结建模,策略优化。1同学们各自假设的道路总长不同,但答案都是7.2天,说明什么?(说明完成时间和道路总长没有关系。)在道路总长发生变化的时候,哪些量在变,哪些量没有变?引导小结:他们单独修的时间不变,无论假设道路全长是多少,两个队每天修的始终占道路全长的和.也就是说对这条公路的全长而言,他们每天修路的米数在变化,但他们每天修这条路的“几分之几”没有变。2比较这几种解法,哪种解法更简便一些?小结 :这道题没有给出具体的工作总量,我们可以把工作总量看作单位“1”。根据“一队单独修12天完成”可知一队每天修全长的(也就是一队的工作效率),根据“二队单独修18天完成”可知二队每天修全长的(也就是二队的工作效率),所以表示两队工作效率之和。用工作总量单位“1”除以工作效率之和,即可求得两队合修所需的工作时间。【设计意图】在验证过程中,学生发现“工作总量变了,工作时间还是不变”,教师要引导学生悟出其中的算理,使每一个学生自主有效地形成新知。从上一环节的算法多样化,到这一环节的方法小结优化,使学生的思维“量”“质”兼备。(五)点明课题:这就是我们今天要学习的“工程问题”(板书课题)。(六)针对性练习。师:咱们一起来试试解题吧!(ppt出示教材第43页“做一做”。)交流解题方法,说一说“把工作总量看作单位1,效率就是次数分之一”。(PPT直观演示线段图。)【设计意图】发挥多媒体计算机辅助教学的优势,出示情境,绘制线段图,为学生提供形象直观的演示,让学生在观察、比较中解决疑难问题,进一步突破本课教学难点,提高教学效率。四、实践应用(一)辨析性练习 判断题。(在正确算式后面的括号内打“”,错误算式后面的括号内打“”。并说明理由。)解答时出现了如下几种列式:300(8+10)( ); 300(3008+30010)( );300( ); 1(3008+30010) ( );1( )。【设计意图】学生对知识的理解容易出现片面性和笼统性,会把刚学的新知识与相似的旧知识混淆,通过辨析,进一步明确工作总量和工作效率必须要相对应,从而促进学生对工程问题本质特征的理解。(二)变式训练,类推应用1甲车从A城市到B城市要行驶2小时,乙车从B城市到A城市要行驶3小时。两车同时分别从A城市和B城市出发,几小时后相遇?(改变问题情境,将工程问题转化为行程问题。)2某水库遭遇暴雨,水位已经超过警戒线,急需泄洪
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 加气混凝土配料浇注工安全规范考核试卷及答案
- 社会辅导班营销方案策划
- 品牌展演活动策划方案
- 黄河护理入团考试题及答案
- 公司财务季度预算编制与执行指导
- 农机服务合同范本与风险提示
- 工程质量管理手势图解
- 园林景观台施工方案
- 初中生物知识点梳理与测试题
- 富民银行笔试题库及答案
- MPOWER及烟草控制框架公约及国际国内控烟进展
- 2023年建筑三类人员(B类)考试题库(浓缩500题)
- 2024年社会工作者之初级社会综合能力考试题库含答案
- 学校品牌塑造校园文化的关键因素报告
- 企业会计学学习资料
- 学校宿舍的卫生与定期清洁策略
- 危险化学品码头安全管理制度(3篇)
- 《电力机车构造(第2版)》课件 任务三 HXD3型电力机车空气管路系统分析
- 2019版 苏教版 高中通-用技术 必修 技术与设计1《第五章 设计图样的绘制》大单元整体教学设计2020课标
- 《列车运行图编制》课件
- 国际物流运输合同参考范本
评论
0/150
提交评论