二元对角BEKK—GARCH模型基于BHHH迭代算法的eviews60操作程序.doc_第1页
二元对角BEKK—GARCH模型基于BHHH迭代算法的eviews60操作程序.doc_第2页
二元对角BEKK—GARCH模型基于BHHH迭代算法的eviews60操作程序.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

BV_GARCH.PRG (3/30/2004) example program for EViews LogL object restricted version of bi-variate BEKK of Engle and Kroner (1995): y = mu + res res N(0,H) H = omega*omega + beta H(-1) beta + alpha res(-1) res(-1) alpha where y = 2 x 1 mu = 2 x 1 H = 2 x 2 (symmetric) H(1,1) = variance of y1 (saved as var_y1) H(1,2) = cov of y1 and y2 (saved as var_y2) H(2,2) = variance of y2 (saved as cov_y1y2) omega = 2 x 2 low triangular beta = 2 x 2 diagonal alpha = 2 x 2 diagonalchange path to program path%path = runpath + ./data/cd %path load workfileload cmw.wf1 dependent variables of both series must be continuessmpl allseries y1 =100*dlog(crb)series y2 = 100*dlog(hushen300) set sample first observation of s1 need to be one or two periods after the first observation of s0 sample s0 1/5/2007 4/1/2011sample s1 1/6/2007 4/1/2011 initialization of parameters and starting values change below only to change the specification of model smpl s0get starting values from univariate GARCH equation eq1.arch(m=100,c=1e-5) y1 cequation eq2.arch(m=100,c=1e-5) y2 c declare coef vectors to use in bi-variate GARCH model see above for details coef(2) mumu(1) = eq1.c(1)mu(2)= eq2.c(1)coef(3) omegaomega(1)=(eq1.c(2).5omega(2)=0omega(3)=eq2.c(2).5coef(2) alphaalpha(1) = (eq1.c(3).5alpha(2) = (eq2.c(3).5 coef(2) beta beta(1)= (eq1.c(4).5 beta(2)= (eq2.c(4).5 constant adjustment for log likelihood!mlog2pi = 2*log(2*acos(-1) use var-cov of sample in s1 as starting value of variance-covariance matrixseries cov_y1y2 = cov(y1-mu(1), y2-mu(2)series var_y1 = var(y1)series var_y2 = var(y2)series sqres1 = (y1-mu(1)2series sqres2 = (y2-mu(2)2series res1res2 = (y1-mu(1)*(y2-mu(2) . LOG LIKELIHOOD set up the likelihood 1) open a new blank likelihood object (L.O.) name bvgarch 2) specify the log likelihood model by append .logl bvgarchbvgarch.append logl loglbvgarch.append sqres1 = (y1-mu(1)2bvgarch.append sqres2 = (y2-mu(2)2bvgarch.append res1res2 = (y1-mu(1)*(y2-mu(2) calculate the variance and covariance seriesbvgarch.append var_y1 = omega(1)2 + beta(1)2*var_y1(-1) + alpha(1)2*sqres1(-1)bvgarch.append var_y2 = omega(3)2+omega(2)2 + beta(2)2*var_y2(-1) + alpha(2)2*sqres2(-1)bvgarch.append cov_y1y2 = omega(1)*omega(2) + beta(2)*beta(1)*cov_y1y2(-1) + alpha(2)*alpha(1)*res1res2(-1) determinant of the variance-covariance matrixbvgarch.append deth = var_y1*var_y2 - cov_y1y22 inverse elements of the variance-covariance matrixbvgarch.append invh1 = var_y2/dethbvgarch.append invh3 = var_y1/dethbvgarch.append invh2 = -cov_y1y2/deth log-likelihood seriesbvgarch.append logl =-0.5*(!mlog2pi + (invh1*sqres1+2*invh2*res1res2+invh3*sqres2) + log(deth) remove some of the intermediary series bvgarch.append temp invh1 invh2 invh3 sqres1 sqres2 res1res2 deth estimate the modelsmpl s1bvgarch.ml(showopts, m=100, c=1e-5) change below to display different outputshow bvgarch.outputgraph varcov.line var_y1 var_y2 cov_

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论