




免费预览已结束,剩余4页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学椭圆总结范文4篇 椭圆公式知识是高中数学中比较重要的一项知识要点,要想掌握椭圆知识点,就要不断努力了。下面,小编给大家介绍一下关于椭圆知识点的总结范文4篇,欢迎大家阅读。椭圆总结1集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用平面向量:有关概念与初等运算、坐标运算、数量积及其应用不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用排列、组合和概率:排列、组合应用题、二项式定理及其应用概率与统计:概率、分布列、期望、方差、抽样、正态分布导数:导数的概念、求导、导数的应用复数:复数的概念与运算椭圆总结2正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角圆的标准方程(-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程2+y2+d+ey+f=0注:d2+e2-4f0抛物线标准方程y2=2py2=-2p2=2py2=-2py直棱柱侧面积s=ch斜棱柱侧面积s=ch正棱锥侧面积s=1/2ch正棱台侧面积s=1/2(c+c)h圆台侧面积s=1/2(c+c)l=pi(r+r)l球的表面积s=4pir2圆柱侧面积s=ch=2pih圆锥侧面积s=1/2cl=pirl弧长公式l=ara是圆心角的弧度数r0扇形面积公式s=1/2lr锥体体积公式v=1/3sh圆锥体体积公式v=1/3pir2h斜棱柱体积v=sl注:其中,s是直截面面积,l是侧棱长柱体体积公式v=sh圆柱体v=pr2h乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|a|+|b|a-b|a|+|b|a|b=-bab|a-b|a|-|b|-|a|a|a|一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a根与系数的关系1+2=-b/a12=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac0注:方程有两个不等的实根b2-4ac0注:方程没有实根,有共轭复数根高二数学椭圆公式知识点篇三两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(a/2)=(1-cosa)/2)sin(a/2)=-(1-cosa)/2)cos(a/2)=(1+cosa)/2)cos(a/2)=-(1+cosa)/2)tan(a/2)=(1-cosa)/(1+cosa)tan(a/2)=-(1-cosa)/(1+cosa)ctg(a/2)=(1+cosa)/(1-cosa)ctg(a/2)=-(1+cosa)/(1-cosa)和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin(a+b)/2)cos(a-b)/2cosa+cosb=2cos(a+b)/2)sin(a-b)/2)tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosbctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb椭圆总结31、新课程改革的核心是促进学生学习方式的变革。怎样改变学生单一的接受式学习?新课程的基本理念之一是“注重科学探究,倡导学习方式多样化”。通过探究性学习,合作性学习,体验性学习等实现学习方式的多样化,其实质是倡导“研究为中心”进行教学。要由重知识传授向重学生发展转变,由重教师教向重学生学转变,由重结果向重过程转变。2、本节课书上内容较简单,如果仅按书上安排照讲,学生也能掌握本节知识,但学生的能力的不到提高。新课标强调,教师应不只是知识的传授者,更是教学的组织者和引导者,课堂教学不仅是基本知识和基本技能的传授,还要重视获取知识的过程。椭圆是常见的曲线,学生通过引言课及日常生活的经验,对椭圆已有一定的认识。为了使学生掌握椭圆的本质特征,以便得出椭圆的定义,教学过程中特别介绍了两种画椭圆的方法,一种是用一根细绳画椭圆的方法,主要是考虑到材料(细绳)取得比较容易,操作也比较简便,能调动学生积极性,培养学生动手能力;另一种是用计算机软件画椭圆的方法,这个画法的好处是便于揭示椭圆形成的本质特征。(即便于观察出椭圆上点所要满足的几何条件),也为以后学习椭圆性质和双曲线打下伏笔,突出双曲线与椭圆的区别与联系。3、概括出椭圆定义是本节的重点。本节课,我放大了椭圆定义建立的过程。首先让学生观看“神舟”六号发射录像,使学生在感叹祖国科技发展的辉煌成就的激情中认识椭圆、感受椭圆。生活中的实例及多彩的多媒体图片可激发学生的学习兴趣,充分调动学生主动参与的积极性。之后让学生探索如何借助手中的细绳画椭圆,从实践中体会椭圆上的点所满足的条件,逐渐把图形语言转化为文字语言。这样,不仅完善了椭圆的定义,也有助于培养学生质疑,养成勤于动脑的良好思维习惯。有助于帮助学生自主学习,学会学习。事实上,沿着学生的思维轨道展开思维,才是对学生最大的尊重,才是以人为本。4、椭圆标准方程的推导是本节课的难点。建立直角坐标系、建立椭圆标准方程是两个重要环节。本课中,我尽可能多地为寻求适当坐标系和建立椭圆标准方程提供时间和空间。首先给学生建系的机会,让他们充分暴露自然思维,让他们在自己认为简洁的坐标系下建立椭圆的方程。通过展示推导过程,比较化简结果,让学生明白哪种坐标系更合适,这样,学生可以在对比、观察、思维的基础上提升自己的思维,使新知识与旧知识尽可能产生天然的联系,而不是人为的告诉其正确的结果,把经验强加给学生。椭圆总结4椭圆的简单几何性质知识点总结椭圆的简单几何性质中的考查点:(一)、对性质的考查:1、范围:要注意方程与函数的区别与联系;与椭圆有关的求最值是变量的取值范围;作椭圆的草图。2、对称性:椭圆的中心及其对称性;判断曲线关于轴、y轴及原点对称的依据;如果曲线具有关于轴、y轴及原点对称中的任意两种,那么它也具有另一种对称性;注意椭圆不因坐标轴改变的固有性质。3、顶点:椭圆的顶点坐标;一般二次曲线的顶点即是曲线与对称轴的交点;椭圆中a、b、c的几何意义(椭圆的特征三角形及离心率的三角函数表示)。4、离心率:离心率的定义;椭圆离心率的取值范围:(0,1);椭圆的离心率的变化对椭圆的影响:当e趋向于1时:c趋向于a,此时,椭圆越扁平;当e趋向于0时:c趋向于0,此时,椭圆越接近于圆;当且仅当a=b时,c=0,两焦点重合,椭圆变成圆。(二)、课本例题的变形考查:1、近日点、远日点的概念:椭圆上任意一点p(,y)到椭
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电厂实操考试题库及答案
- 2025年康复医学治疗技术(副高级职称)试卷【含答案详解】
- 2025年电焊工证-上岗证考试试题考试题库(带答案)
- 2025年广东省清远市国家公务员行政职业能力测验模拟题(附答案)
- 2024-2025学年机械设备制造修理人员考前冲刺试卷含答案详解(满分必刷)
- 关于房屋出售合同
- 自考专业(工商企业管理)高分题库附参考答案详解(突破训练)
- 2025自考专业(计算机信息管理)通关题库及完整答案详解(典优)
- 米易安全员b证考试及答案
- 襄城科三安全员考及答案
- 公路汛期安全培训
- mdt护理管理制度
- 麻醉科常用设备
- 2025-2030年中国手持三维激光扫描仪行业市场深度分析及发展趋势与投资前景研究报告
- 潍坊市公安局招录警务辅助人员笔试真题2024
- 中医运动养生教学课件
- 医学院研究生招生宣传
- 大数据分析与数据挖掘知识习题集
- GB/T 25820-2025包装用钢带
- 点云质量评估-全面剖析
- 形婚协议书合同完整版
评论
0/150
提交评论