3.3.1几何概型导学案.doc_第1页
3.3.1几何概型导学案.doc_第2页
3.3.1几何概型导学案.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.3.1几何概型学习目标(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式: (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型学习指导如果 只 与 成比例,则称这样的概率模型为几何概型. 参照古典概型的特性,几何概型有哪两个基本特征?(1)可能出现的结果有无限多个;(2)每个结果发生的可能性相等.例题分析 (1) (2)例题1:有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率。例2:某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率例3:假设你家订了一份报纸,送报人可能在早上6:307:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:008:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?总结提升1.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型2. 几何概型的概率公式: 自我检测1在区间 0,3内随机地取一个数,则这个数大于2的概率是 ( ) A B C D2.某路公共汽车5分钟一班准时到达某车站,任一人在该车站等车时间少于3分钟的概率是 ( )A B C D3.在长为10 cm的线段AB上任取一点P,并以线段AP为边作正方形,这个正方形的面积介于25 cm2与49 cm2之间的概率为( )ABCD4.如右图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为( )A B C D5.如图,有一圆盘其中的阴影部分的圆心角为,若向圆内投镖,如果某人每次都投入圆内,那么他投中阴影部分的概率为( )A B C D3.3.1几何概型课后练习1.现有的蒸馏水,假定里面有一个细菌,现从中抽取的蒸馏水,则抽到细菌的概率为( )A B C D2.在区间中任意取一个数,则它在4到之间的概率是( ) 3.若过正三角形的顶点任作一条直线,则与线段相交的概率为( ) 4.从开区间中随机取两个数,求下列情况下的概率: 两数之和小于;两数平方和小于.5.甲乙两人相约上午8点到9点在某地会面,先到者等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论