




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
氢键和分子间作用力A组 A固体乙醇晶体中不存在的作用力是A 离子键 B 共价键 C 氢键 D 分子间力 A固体草酸晶体中不存在的作用力是A 离子键 B 共价键 C 氢键 D 分子间作用力 C在下列物质的晶体中,既有共价键又有分子间作用力的是A 二氧化硅 B 氦 C 氨 D 铜 A在单质晶体中,一定不存在A 离子键 B 分子间作用力C 共价键 D 金属离子与自由电子间的作用 C下列物质晶体中,同时存在极性键、非极性键和氢键的是A SO3 B H2O C C2H5OH D C2H6 B共价键、离子键和范德华力都是微观粒子之间的不同作用力,下列物质: Na2O2; SiO2; 石墨; 金刚石; NaCl; 白磷,其中含有两种结合力的组合是A B C D B、C碘晶体升华时,下列所述内容发生变化的是A 分子内共价键 B 分子间的作用力C 分子间的距离 D 分子内共价键的键长 B下列物质变化时,需克服的作用力不属于化学键的是A HCl溶于水 B I2升华 C H2O电解 D 烧碱熔化 C下列各组中的两种固态物质熔化(或升华)时,克服的微粒间相互作用力属于同种类型的是A 碘和碘化钠 B 金刚石和重晶石C 冰醋酸和硬脂酸甘油酯 D 干冰和二氧化硅 AB CD根据人们的实践经验,一般来说,极性分子组成的溶质易溶于极性分子组成的溶剂,非极性分子组成的溶质易溶于非极性分子组成的溶剂,称为相似相溶原理。根据“相似相溶原理”判断,下列物质中,易溶于水的是 ;易溶于CCl4的是 。A NH3 B HF C I2 D Br2 A D 同族元素的氢化物相对分子质量越大,分子间作用力越大,沸点越高H2O、HF、NH3分子间存在氢键,使分子间作用力显著增大,因而沸点显著升高右图中A、B、C、D四条曲线分别表示A、VA、A、A旅元素的气态氢化物的沸点,其中表示A族元素气态氢化物沸点的是曲线 ;表示A族元素气态氢化物沸点的是曲线 ;同一族中第3、4、5周期元素的气态氢化物沸点依次升高,其原因是 ;A、B、C曲线中第2周期元素的气态氯化物的沸点显著高于第3周期元素气态氢化物的沸点,其原因是 。 共价键 离子键请写出下列物质性质的变化规律与哪种作用力有关?AHF、HCl、HBr、HI的热稳定性依次减弱 ;BNaF、NaCl、NaBr、NaI的熔点依次降低 。B组 D下列物质中不存在氢键的是A 冰 B DNA分子 C 液氨 D 液化气 D右图中每条折线表示周期表AA中的某一族元素氢化物的沸点变化,每个小黑点代表一种氢化物,其中a点代表的是A H2S B HCl C PH3 D SiH4 B、C关于氢键,下列说法正确的是A 每一个水分子内含有两个氢键B 冰、水中都存在氢键C 分子间形成的氢键使物质的熔点和沸点升高D H2O是一种非常稳定的化合物,这是由于氢键所致 D不存在氢键的是A 纯H2O中的H2O分子之间B 液态HF中的HF分子之间C NH3H2O分子中的NH3与H2O之间D 可燃冰CH4nH2O中的CH4与H2O之间 B下列事实与氢键有关的是A 水加热到很高的温度都难以分解B 水结成冰体积膨胀,密度变小C CH4、SiH4、GeH4、SnH4熔点随相对分子质量增大而升高D HF、HCl、HBr、HI的热稳定性依次减弱 B下列事实与氢键有关的是 A 水加热到很高的温度都难以分解B 水结成冰体积膨胀,密度变小C CH4、SiH4、GeH4、SnH4熔点随相对分子质量增大而升高D HF、HCl、HBr、HI的热稳定性依次减弱 A下列物质发生变化时,所克服的粒子间相互作用属于同种类型的是A 液溴和苯分别受热变为气体 B 干冰和氯化铵分别受热变为气体C 二氧化硅和铁分别受热熔化 D 食盐和葡萄糖分别溶解在水中 B关于氢键,下列说法正确的是A 在水中,每个氧原子周围有4个氢原子,并分别与之形成氢键B 甲硫醇(CH3SH)比甲醇的熔点低的原因是甲醇分子间易形成氢键C 氨易液化与氨分子间存在氢键无关D 水是一种非常稳定的化合物,这是由于水分子间存在氢键所致 D下列变化或数据与氢键无关的是A 甲酸蒸气的密度在373K时为1.335g/L,在293K时为2.5g/LB 氨分子与水分子形成一水合氨C 丙酮在已烷和三氟甲烷中易溶解,其中在三氟甲烷中溶解时的热效应较大D SbH3的沸点比PH3高 B影响分子晶体熔沸点时的因素主要是分子间的各种作用力。硝基苯酚的分子内和分子之间都存在氢键,邻硝基苯酚以分子内氢键为主,对硝基苯酚以分子间氢键为主,则邻硝基苯酚和对硝基苯酚的沸点比较正确的是A 邻硝基苯酚高于对硝基苯酚 B 邻硝基苯酚低于对硝基苯酚C 邻硝基苯酚等于对硝基苯酚 D 无法比较 A.下列可用氢键来解释的是A 浓的氢氟酸溶液中存在HF2和H2F3B SiH4沸点比CH4高C 水和乙醇分别与金属钠反应,前者比后者剧烈D H2O比H2S稳定,前者1000以上才分解,后者300分解 A、C.美国科学杂志12月17日评选出2004十大科学突破中,有多项与水有关,其中之一是关于对水的研究有新进展,一些科学家对于水分子如何聚合以及电子及质子如何在水中溶解等问题上,都有了新发现。另据 2004年4月14日中科院网报道,中科院物理所王恩哥小组他们首次证明存在一种稳定的二维冰相。它是由四角形和八角形的氢键网格交替组成的,研究人员把这种新的冰结构命名为镶嵌冰。有趣的是,这种镶嵌冰可以在室温下稳定存在。有关这种镶嵌冰的推测肯定不正确的A 镶嵌冰密度可能比4水大B 镶嵌冰中四角形环比八角形环中水分间的氢键键能强C 每个水分子形成两个氢键D 镶嵌冰属于分子晶体 C已知I2易溶于KI溶液中,HF易溶于NaF溶液中,即某元素的单质或化合物通过缔合易溶于该元素的化合物中。下列叙述中属于上述情况的是A Br2易用于溴苯中 B S易用于CS2中C S易溶于Na2S溶液中 D AgF易溶于水中 B、C下列物质性质的变化规律,与共价键的键能大小有关的是A F2、Cl2、Br2、I2的溶点、沸点逐渐升高B HF、HCl、HBr、HI的热稳定性依次减弱C 金刚石的硬度、熔点、沸点都高于晶体硅D NaF、NaCl、NaBr、NaI的熔点依次降低 A下列物质发生变化时,所克服的粒子间相互作用属于同种类型的是A 液溴和苯分别受热变为气体 B 干冰和氯化铵分别受热变为气体C 二氧化硅和铁分别受热熔化 D 食盐和葡萄糖分别溶解在水中 D氨气溶于水时,大部分NH3与H2O以氢键(用“”表示)结合形成NH3H2O分子。根据氨水的性质可推知NH3H2O的结构式为 A B C D B若不断地升高温度,实现“雪花水水蒸气氧气和氢气”的变化。在变化的各阶段被破坏的粒子间的相互作用依次是A 氢键;分子间作用力;非极性键B 氢键;氢键;极性键C 氢键;极性键;分子间作用力D 分子间作用力;氢键;非极性键 A右图为冰的一种骨架形式,依此为单位向空间延伸,请问该冰中的每个水分子有几个氢键A 2 B 4 C 8 D 12 (1)棕色,紫色。 (2)温度高时,分子间作用力弱。碘在不同溶剂中呈现紫色、棕色一般认为溶液呈紫色的表明溶解了的“碘分子”并未和溶剂发生很强的结合。已知不同温度下,碘在石蜡油中的溶液呈紫色或棕色。请回答温度低时溶液呈 色,温度高时溶液呈 色,因为 (1)极性分子 (2)增大 水分子是极性分子,当它被置于强磁场之中时,分子中的正负两端受到磁场两极的“牵引”,而使分子体积增大。为研究分子极性问题,设计如下实验:(1)让蒸馏水通过酸式滴定管慢慢下流如线状,将摩擦带电的玻璃棒靠近水流,发现水流的方向发生偏转,说明水分子是: ;(2)把盛在玻璃容器中的蒸馏水置于强磁场的两极之间,蒸馏水的体积: (填写增大、缩小、不变),这是因为 。 固体熔点越低,在液体中的溶解度越大。气体沸点越高,在液体中的溶解度越。物质分子间作用力越接近液体(溶剂)分子间作用力,则溶解度越大。下面是几种物质的溶解度数据:上述数据可以说明,结构相似的一类固体,在液体中的溶解度的规律是 ;结构相似的一类气体,在液体中的溶解度的规律是 ;固体和气体在液体中的溶解度呈现上述规律的原因是 。 (1)红棕色 H2Se(2)氧化性逐渐减弱 Cl22Br2ClBr2(3)随着相对分子质量增大,沸点逐渐升高(4)HF、H2O 分子之间易形成氢键有四种同族的物质,它们的沸点(,P1.01105pa)如下表所示:He 268.8Ne 249.5Ar (x)Kr 151.7F2 187.0Cl2 33.6(a) 58.7I2 184.0HF (y)HCl 84.0HBr 67.0HI 35.3H2O (z)H2S 60.2(b) 42.0H2Te 1.8试根据上表回答下列问题:(1)a为 色液体;b的分子式为: 。(2)写出系列中物质主要化学性质的递变规律(任写一种): ;能够说明该递变规律的化学事实是: (任举一例,用离子方程式表示)。(3)除极少数情况外,上述四种系列中物质的沸点与相对分子质量之间均存在一定的关系,该关系是 。(4)上表中, 和 两种物质的沸点较同系列其它物质反常,反常的主要原因是 。 (1)加热试管时,部分冰融化,而其余的则仍保持固态(2)巧克力整块的逐渐变软(3)巧克力的变化(4)例如玻璃,石蜡,黄油,塑料,糖蜜,橡胶当加热下列物质时,对比它们发生的可见变化:(1)一个装有冰的试管;(2)一块巧克力;(3)哪一种变化属于非晶态固体表现的特性?(4)试找出其他三种常见的非晶态材料。 、是缔合液体。它们形成缔合分子时的氢键是: 氢键是一个氢原子在两个强电负性原子之间所架的桥,它以共价键和其中一个原子结合,又以纯粹的静电力与另一个原子结合,因此它比一般的偶极偶极作用强得多,所以对化合物的沸点和溶解度影响很大。下列化合物中,你预计哪些是缔合液体?画出其可能存在的氢键的结合方式。CH3OH CH3OCH3 CH3F CH3Cl CH3NH2 (CH3)2NH (CH3)3Al 四个化合物都是苯甲酸的衍生物,不同之处在于OH或OCH3基团性质和所联结的位置不同,即使是相同基团,因其空间位置变化,故晶格中基团间的作用力也有差别,导致化合物熔点发生了变化(a)和(c)是一对异构体,(c)在晶格中能与另一分子形成分子间氢键,(a)则形成分子内氢键,因前者键力大于后者,故(c)熔点高于(a)。(b)(d)的晶格中存在着较大的范德华力,故其熔点比(a)大有下列四种化合物a,b,c,d,它们的结构相似,并且都为分子晶体,但各自的熔点却有较大差别,为什么? (a) (b) (c) (d)mp266 mp309 mp388 mp273 (1)水、甲醇、乙醇、乙酸、丙酮、丙醇、甲乙醚。(2)、化合物分子间都有氢键,所以其沸点较化、高。、为同系物,分子量高,沸点也高。、化合物的分子量相同。因能成双分子,所以沸点高。无氢键,沸点低于。自然界中往往存在许多有趣也十分有意义的现象,下表列出了若干化合物的结构、分子式、分子量和沸点结构式分子式分子量沸点() HOHH2O18100 H3COHCH4O3264 H3CCH2OHC2H6O4678 H3COHC2H4O260118 H3CCH3C3H6O5856 H3CCH2CH2OHC3H8O6097 CH3CH2OCH3C3H8O6011(1)写出种化合物的化学名称。(2)从它们的沸点看,可以说明哪些问题? (1)小 2 (2)液态水中仍然存在大量氢键 (3)12 1.56水是我们熟悉的物质。每个水分子都能被其他4个水分子包围形成如右图所示的四面体单元,由无数个这样的四面体再通过氢键可相互连接成一个庞大的分子晶体冰。(1)氢键的形成使冰的密度比水 ,氢键有方向性和饱和性,故平均每个水分子最多形成 个氢键。(2)实验测得冰中氢键的作用能为18.8 kJ/mol,而冰的熔化热为5.0kJ/mol,说明 。(3)干冰的外观和冰相像,可由二氧化碳气体压缩成液态后再急剧膨胀而制得。右图为干冰晶体结构示意图。通过分析,可知每个CO2分子周围与之相邻等距的CO2分子共 个。一定温度下,已测得干冰晶胞(即图示)的边长a5.72108cm,则该温度下干冰的密度为 g/cm3。 (1)CF4的C、PF3的P均sp3杂化,但CF4为正四面体,为非极性分子,而PF3为三角锥体,为极性分子。分子间,CF4只有色散力,而PF3有色散力、诱导力、取向力,分子间力PF3CF4,故PF3的熔点、沸点高于CF4。(2)C为第二周期元素,只有一个价轨道,在CF4中的配位数已经饱和,CF键能也较大,故室温下不水解;高温下,CF43H2OCO24HF;P为第三周期元素,有9个价轨道,在PF3中,P的配位数不饱和,只有它的价轨道可接受Lewis碱进攻;P上有孤对电子,可作为Lewis碱与氢离子反应,故宜水解,且反应彻底:PF33H2OH3PO33HFCF4和PF3具有相同的电子数(42个)它们的分子量也相等(88),但性质却不同,例如:CF4的溶沸点为m.p.184,b.p.128;PF3为m.p.151.5,b.p.101.5;再如:它们与水的作用也不同。请给予解释,写出有关反应式。 H2O2分子间存在氢键,在液态或固态中存在缔合现象,所以熔、沸点高;与水分子可形成氢键,所以溶解度大。H2S和H2O2的主要物理性质比较如下:熔点K沸点K标准状况时在水中的溶解度H2S1872022.6H2O2272423以任意比互溶H2S和H2O2的相对分子质量基本相同,造成上述物理性质差异的主要原因是什么? (1)每个水分子平均最多可形成2个氢键,每个HF分子平均最多生成1个氢键。前者氢键数目多,总键能较大,故沸点较高。(2)氟原子半径小,外层孤对电子多,电子云密度大,电子间斥力大,使得氟原子结合一个电子形成气态F-时放出能量较少。(1)H2O的沸点(100)比HF的沸点(20)高,这是由于 。(2)气态氯原子与一个电子结合比气态氟原子与一个电子结合放出更多的能量,这是由于 。 AC(BF3的硼原子最外层只有6个电子,为缺电子原子)(2) (3)C42H6F24Hg6 C6H6超分子化学是一门新兴的科学,在材料、生化、催化剂等领域得到很高重视。不久前,美国Texas A&M 大学的研究人员发现:将已知的路易斯酸三聚(邻四氟代苯基)汞溶入沸腾的苯中,冷却后析出的晶体是苯和该路易斯酸的超分子,由苯分子夹在两路易斯酸分子之间堆砌而成。俯视如右图(氟原子和氢原子未列出)。(1)路易斯酸是对酸的电子定义:凡容易接受电子的为酸,凡容易给出电子的为碱。下列微粒中,为路易斯酸的有:A Al3 B I C BF3 D NH3 ( )(2)画出邻四氟代苯基的结构式和三聚(邻四氟代苯基)汞的结构式:(3)该超分子如同夹心饼干(维夫饼干),俯视图化学式为 ,超分子的路易斯碱部分为 (填化学式)。C组 三氟甲烷 三氟甲烷分子结构中CF3是一个强吸电子基团,故C原子上的H也几乎成了裸露的质子,这样,三氟甲烷与丙酮形成了氢键:,从而导致丙酮在三氟甲烷中溶解时,产生的热效应较大。丙酮在己烷和三氟甲烷中易溶解,其中 中溶解的热效应较大,因为 。 咖啡因对中枢神经有兴奋作用,其结构式如下。常温下,咖啡因在水中的溶解度为2g/100g H2O,加适量水杨酸钠C6H4(OH)(COONa),由于形成氢键而增大咖啡因的溶解度。请在附图上添加水杨酸钠与咖啡因形成的氢键。 CHCl3的氢原子与苯环的共軛电子形成氢键。氯仿在苯中的溶解度明显比1,1,1三氯乙烷的大,请给出一种可能的原因(含图示)。 阿司匹林中的羧酸和柠檬酸根反应形成阿司匹林的钠盐。阿司匹林结构式如右,难溶于水。若和适量柠檬酸三钠混合,即可增大溶解度。解释原因。 (1) (2) 4个吡啶酮结合位置与两分子的丙酸通过氢键结合产生加合物,阻碍金刚石状结构生成(3)在自然界,氢键广泛用于调控生物分子间的缔合。氢键的强度及方向性可用于按预测的几何组装分子,如选择性地键合及识别,反应催化,基因信息的贮存、复制及表达,功能材料的制备等等。通过氢键可以在液态及固态形成各种各样的聚集体。这些聚集体是可预测的也是可以调整的超分子建筑。因为这些结构是由独立的子单元构成,人们称为这些子单元为“构造块”,因此我们称它为分子构造学,它是使用构造块构筑超分子的科学及艺术。氢键的强度及可预测的方向性是同自组装过程中其他弱相互作用力有区别的。氢键方法的优点是使超分子聚集体由建筑块同时形成超分子构筑。它可以避免逐条键合成的方式。在原则上,在超分子构造中,氢键在强度及方向性上压倒其他分子问的相互作用并且控制构造块的聚集。(1)下面两种物质A、B都有二吡啶酮环结构,都能形成环状三聚体,不同的是,前者只能形成分子间氢键,后者又能形成分子内氢键。请画出两种三聚体的结构简式A B(RC2H5)(2)在研究分子构造学中,化学式为C53H128N4O4的“构造块”C是引人注目的物质,结构中具有4个吡啶酮,能作为结合位点自缔合成无限的金刚石结构。如果把C中所有基团看作质点,则C能体现很好的对称性。1mol物质C能与8mol Br2发生加成反应。请画出物质C的结构简式;物质C在己烷及甲醇的混合物中同丙酸形成C8RCOOH(RC2H5)。这些晶体的形貌是令人惊奇的。因为在这些条件下不能形成具有金刚石结构的网。请结合可能形成的作用力分析原因。(3)弱方向性力在晶体工程中是最难控制的,但也是超分子化学中重要研究内容。CHN类相互作用在化学及生物体系中有重要的作用,把这类相互作用称为氢键是由于它同强氢键相似,都有大的静电相互作用性质,而且都是长程相互作用力。1,3,5三氰基苯分子依靠这种作用力在晶体中形成六方网络,请画出该结构。 (1)在CHCl3分子中,3个Cl原子和C原子相连,Cl原子是拉电子体,使和3个Cl相连的C原子(相对而言)正性增强了(和CH4中C原子相比);在(CH3)2CO分子中,CH3是推电子基团,因此和2个CH3相连的C原子的负性增强了,从而使与之相连的O原子变得更负,这样就有可能发生下列氢键的结合Cl3CHOC(CH3)2。(2)从它们的结构上看,C2H5OH和H2O之间形成的氢键肯定强于CHCl3和(CH3)2CO之间形成的氢键,但其前者之所以释热量少是因为C2H5OH和H2O混合释热量是:“C2H5OH和H2O间形成氢键释热量和拆散H2O分子间、C2H5OH分子间的氢键吸热量的代数和”;而CHCl3和(CH3)2CO间形成氢键释热是它和拆散CHCl3分子间、(CH3)2CO分子间作用力的代数和(一般分子间作用力小于氢键间力)分别量取0.5mol CHCl3、(CH3)2CO、C2H5OH及H2O,并测量其温度。然后分别混合CHCl3和(CH3)2CO,C2H5OH和H2O,搅拌并测量溶液温度所能达到的最高值。其实验结果是:前者升温911,后者升温45。常温下这几种溶剂的热容差值不大,且两种混合液又都是(共)1mol,而今在两种情况下升温幅度明显不同,这是混合释热不同所引起的,显然CHCl3和(CH3)2CO混合时释热更多。已知C2H5OH和H2O能以任何比例互相混合的现象是和它们相互间形成氢键有关,而今形成氢键的释热量不如CHCl3和(CH3)2CO混合时释热多。为了说明后两者互相溶解时释热量大,当然不能用比氢键弱的分子间作用力来解释,而只能用氢键来讨论。一般教科书上介绍氢键时强调了“和氟、氧、氮结合的氢,可能形成氢键”。而在CHCl3、(CH3)2CO中的氢原子都是和碳原子相结合,氧原子、氯原子也都是和碳原子相结合的,似乎没有生成氢键的前提,但不用氢键又不能解释上述实验事实。就是说还得从氢键上来考虑问题。(1)思考如何解释这一问题?(2)在以上2个反应中都有氢键形成,为什么CHCl3和(CH3)2CO间形成氢键释热量更大呢? (1)H2F,NH4(2) H3O(H2O)n,n1,2,3(3)H2O-HF,H2O-HCl,H2O-HCN,H2N-HOH。只有NH3和水的加合物里水是质子给体,因为氧原子的电负性比氮原子大,所以HOH共用电子对偏向氧,使水中的氢变成裸露的质子和氮形成氢键。(3) H是周围没有电子层,是一个裸露的原子核,所以质子的电荷中心比一般离子更容易靠近邻近的原子或离子。原子核外有电子层的一般离子的尺度数量级在1010m。而质子的大小是费米级(1015m)的。它不但是最简单的离子,也是最轻、最小的离子。正因为质子具有以上这些极特殊的结构特点,使它往往与周围环境有很强的相互作用,在溶液中更易溶剂化。(1)我们通常遇到的质子都是与其它一些分子H2O如通过氢键结合以复合离子H3O形式存在,请再举出2例。(2)在水溶液中,H与H2O中的O通过氢键结合,形成水合氢离子H3O(如右上图)。然而,在水溶液中H是否只以H3O一种形式存在呢?质子总的水合能(1117kJ/mol)比质子与一个水分子结合的能量(714kJ/mol)要大,这说明H可能与不只一个水分子发生相互作用,或者说,H与一个H2O分子形成的H3O还可能进一步与邻近的水分子结合。比如H5O2(如右下图)。请画出两种H9O4的结构式,并且归纳更大的团簇分子式通式。(3)在气相中,H2O和HF、HCl、HCN和NH3等的加合物已用微波谱研究过,并为“谁是质子给体?谁是质子受体?”这一问题提供答案。请写出HF、HCl、HCN和NH3在气相中和水加合物的结构式,用“-”表示氢键,用“”表示共价键,说明哪种加合物中水是质子给体,为什么?(4)HCO3离子也能类似H2O分子,互相结合为(HCO3)22和(HCO3)nn,分别画出它们的结构式。 (1)碱性问题:乙醇基置换氢离子降低了键的极性,从而降低了氮原子上的孤对电子的碱性。沸点问题;三乙醇胺分子间有更强的氢键和范德华力。(2)能代替的原因:N(CH2CH2OH)3H2SHN(CH2CH2OH)3HS2N(CH2CH2OH)3H2SHN(CH2CH2OH)32SN(CH2CH2OH)3H2CO3HN(CH2CH2OH)3HCO32N(CH2CH2OH)3H2CO3HN(CH2CH2OH)32CO3可以增加年产值的原因:上列反应生成的盐在加热时分解放出硫化氢和二氧化碳,三乙醇胺被回收循环使用据报道:某石油化工厂用三乙醇胺的水溶液代替氢氧化钠水溶液洗涤石油裂解气除去其中的二氧化碳和硫化氢,年增产值100万元。(1)三乙醇胺可以看作是氨的衍生物:用乙醇基(CH2CH2OH)代替氨分子里的氢。三乙醇胺的碱性比氨弱,但沸点却高得多:200。试用你学过的分子结构原理来解释:为什么三乙醇胺的碱性和沸点相对于氨有这样的特性?碱性问题:沸点问题:(2)怎样理解上述报道;为什么三乙醇胺能够代替氢氧化钠以及为什么这种改革可以增加年产值?能代替的原因:可以增加年产值的原因: (1)因为S原子的电子组态为1s22s22p63s23p4。价电子数为6,在SF6分子中,S原子采用sp3d2等性杂化,6个杂化轨道,6个价电子与6个F原子形成6个键,几何构型为正八面体,分子的对称性高,无极性,所以有良好绝缘性能。(2)由于C,N为sp2杂化,故6个原子共平面。N,C,O间有离域键。(3)分子间作用力和氢键下面是有关物质结构的系列问题:(1)请从成键情况解释SF6是绝缘性能良好的液体,可作变压器油。(2)蛋白质是由多肽链组成,多肽链的基本单元如下左图。推测6个原子能共平面的主要原因。(3)对于某种致幻药“阿拉丁神话”有这样的解释:如右上图是对苯二酚的结构简式。这种物质内含乙醚之Hydroquinone晶笼,其形状类似神灯,当摩擦时,Hydroquinone溶解,乙醚跑出来,被吸入后,而产生之幻想。形成晶笼是由于 17.8kJ/mol氢键 比无氢键的某固体的升华焓多出的升华焓部分可能是由于氢键的缘故。每个H2O与其他4个H2O分子通过OHO健合。每个氢键链为两个H2O分子所共享。因此,平均来说,每个H2O分子被分成四半,或者两个氢键。在冰的六方晶系结构中(如右图),每个氧原子以四面体角度方向和其他四个氧原子配位相互作用,在每两个相邻的氧原子之间有一个氢原子。0时,冰的升华焓H为51.0kJ/mol H2O。如果冰中H2O分子之间未形成氢键,则可以通过与类似于冰的分子间力为van der Waals力的未形成氨键的固体对比,就能估计出冰的升华焓仅仅是15.5kJ/mol H2O。由这些数据,估计一下冰氢键的强度。 (1)a: b:(2)(3)(4)X:Y:20世纪80年代末,诺贝尔化学奖获得者Lehn教授创造性地提出了超分子化学的概念并在这一领域进行了大量的卓越的实践。超分子化学是研究两种以上的化学物种通过分子间相互作用缔合而成为具有特定结构和功能的超分子体系的科学。简而言之,即是研究各个分子通过非共价键作用而形成的功能体系的科学。利用氢键等非共价相互作用将相对比较简单的分子亚单元组装成具有二维或三线长程有序的超分子聚集体是设计新颖功能材料的一条新途径,近年来受到广泛关注并成为前沿领域的一个研究热点。(1)2吡啶酮(C5H5NO)是一种可以与自身互补的分子,在晶体或溶液中,它以氢键连接的二聚体形式存在。若用乙炔基将两个2吡啶酮连接有两种方式:对称连接(a)和非对称连接(b)。Wuest研究了(a)和(b)的聚集行为,在质子溶剂中(a)和(b)都以单体形式存在;在非质子溶剂中(a)以二聚体形式(c)存在,即使浓度很高时,(b)仍以单体形式存在。在本体状态下,(a)形成分散的二聚体,(b)形成了平面的线性超分子聚合物(d)。写出2吡啶酮的结构简式;2吡啶分子中所成键的情况如何?写出2吡啶酮二聚体的结构简式;写出a、b的结构简式;画出二聚体(c)的结构简式;画出聚合物(d)的结构片段。(2)鸟嘌呤()和胞核嘧啶()通过氢键形成的的复合物是构成核酸的核心成分。写出该复合物的氢键形成情况。(3)二酰基嘧啶()是平面型分子,存在互变异构体。在这些晶体中存在着中心对称的二聚体。写出该二聚体的结构简式。(4)和通过加聚反应生成X(X分子内存在氢键),X分子可自组织合成超分子聚合物Y。写出X、Y的结构简式。 (1)非极性分子进入水中会导致周围水分子呈有序化排列使熵大量降低(S0),自由能的变化(G)最终是正值(2)边对面的T型方式 面对面地平行接触 (3)非极性基团芳环的电子可以与水分子形成弱的氢键,从而增加了芳香化合物在水中的溶解度;芳环的电子还可以与Na,K等阳离子形成较强的非共价键相互作用疏水作用是决定生物分子的结构和性质的重要因素,特别是在蛋白质的折叠,药物分子与受体(蛋白质、DNA等)的相互作用中扮演着重要的角色。非极性化合物例如苯、环己烷在水中的溶解度非常小,与水混合时会形成互不相溶的两相,即非极性分子有离开水相进入非极性相的趋势,即所谓的疏水性(Hydrophobicity),非极性溶质与水溶剂的相互作用则称为疏水效应。(1)有关相似相溶原则可以用热力学自由能的降低来理解。(G0;GHTS,式中是焓变,代表降低体系的能量因素;是体系熵增的因素。在常温下(25 C),非极性溶质溶于水焓的变化(H)通常较小,有时甚至是负的,似乎是有利于溶解的;但实际上溶解度不大!请分析原因。(2)疏水基团之间的相互作用通常被认为是没有方向性的,但是最近对剑桥晶体结构数据库(CSD)和蛋白质晶体结构数据库(PDB)的研究发现,疏水作用是有方向倾向性的。请分析富电子的吲哚芳环与苯环、缺电子的恶唑环与苯环的可能接触方式,画出示意图。(3)下面的研究有助于进一步揭示疏水效应和疏水作用的本质。芳香化合物在水中的溶解度其实也不是很小,这取决于相互间的氢键作用,该氢键是因为什么而产生? ;Na,K等阳离子能与有些芳香化合物很好的互溶取决于 。 (1)通过OHO氢键 20 24(2)2 6(3)每个水分子通过氢键与4个水分子形成骨架结构m202246/446(4)8CH446H2O(n8)(5)按晶体的理想组成和晶胞参数,可算得晶胞体积V和晶胞中包含CH4的物质的量n(CH4):Va3(1180pm)31.64103pm31.641027m3n(CH4)1.331023mol1m3甲烷水合物晶体中含CH4的物质的量为:n1.331023mol8.11103mol它相当于标准状态下的甲烷气体V8.1122.4m3182m3(6)文献报导值比实际值小,说明甲烷分子在笼形多面体中并未完全充满,即由于它的晶体中CH4没有达到理想的全充满的结构。实际上甲烷水合物晶体结构形成时,并不要求512全部都充满CH4分子,它的实际组成往往介于6CH448H2O和8CH446H2O之间。(7)A:甲烷水合物冰;B:甲烷气体冰;C:甲烷水合物水;D:甲烷气体水; E:甲烷水合物冰甲烷气体水(8)由于n(Cl2)n(H2O)18648。因此,十四面体笼填入6个Cl2,2H2O进入十二面体笼。气体水合物是一类将H2O分子结合成三维骨架型的主体结构,在其中有多面体孔穴,孔穴中包含作为客体的气体小分子,形成笼形水合包合物晶体。根据客体分子的大小和形状,水分子可组成多种形式的主体骨架结构。已知有上百种气体分子和水形成水合包合物,其中甲烷水合物是最重要的一种。甲烷水合物(nCH4mH2O,m、n为1个晶胞中CH4、H2O的分子个数)是一种具有重要经济价值的化合物,在海洋深处蕴藏量非常大,是未来的重要能源之一。它的晶体结构可看作由十二面体右图左和十四面体右图右共面连接堆积形成。在立方晶胞中,十二面体的中心处在顶角和体心位置;十四面体中心位置在面上,坐标为(1/4,1/2,0)、(3/4,1/2,0)、(0,1/4,1/2)、(0,3/4,1/2)、(1/2,0,1/4)、(1/2,0,3/4)计6个。它们彼此共用六角形面连成柱体,再和五角十二面体共面连接。右图所示出甲烷水合物中水骨架的结构(立方体为晶胞)。(1)H2O分子是通过什么作用力结合成三维骨架的,确定组成十二面体和十四面体的水分子个数;(2)确定晶胞中十二面体和十四面体的个数(3)计算晶胞中骨架水分子的个数(m值),写出计算过程和理由;(4)CH4分子由于体积较小,可包合在这两种多面体中,若全部充满时,确定晶胞的组成为(n值)。(5)已知该晶胞参数a1180pm,计算1m3甲烷水合物晶体中可释放CH4的体积(标准状况下)。(6)有的文献中报导开采1m3的甲烷水合物晶体可得到164m3的甲烷气体,请根据5的结果给出一合理解释。(7)下图是甲烷水合物的相平衡图,图中两条曲线X和Y分别代表相应水与冰的临界线和水合物与气体的临界线,Z为临界点。A、B、C和D区域中的组分:A ,B ,C ,D ;Z点的组分 。(8)已知Cl2的气体水合物晶体中,Cl2和H2O的分子数之体为18,在其晶体中水分子所围成的笼型骨架结构与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年甘肃省天水市辅警协警笔试笔试模拟题(附答案)
- 2025年福彩中心法务部招聘笔试专项练习含答案
- 2025标准混凝土搅拌车运输合同范本下载
- 2025年复调试题及答案
- 2025年四川省公务员公开遴选笔试模拟题及答案
- 企业文化托管协议
- 2025年政府驻外招商局招聘笔试高频错题及答案
- 人民警察招录面试(交通警察)经典题及答案
- 2025年机关事务管理局机关保卫处招聘面试题库附答案
- 2026届黑龙江省齐齐哈尔市化学高三上期末联考试题含解析
- 《武汉大学分析化学》课件
- 医学影像学与辅助检查
- 电力工程竣工验收报告
- 《HSK标准教程1》第4课课件
- 双J管健康宣教
- 如何提高美术课堂教学的有效性
- 水电站新ppt课件 第一章 水轮机的类型构造及工作原理
- 护理查对制度课件
- 市政工程占道施工方案
- GB/T 39965-2021节能量前评估计算方法
- GB/T 20671.1-2006非金属垫片材料分类体系及试验方法第1部分:非金属垫片材料分类体系
评论
0/150
提交评论