《论文(论文)聚氨酯技术对家电行业持续 发展的 贡献(定稿)》.doc_第1页
《论文(论文)聚氨酯技术对家电行业持续 发展的 贡献(定稿)》.doc_第2页
《论文(论文)聚氨酯技术对家电行业持续 发展的 贡献(定稿)》.doc_第3页
《论文(论文)聚氨酯技术对家电行业持续 发展的 贡献(定稿)》.doc_第4页
《论文(论文)聚氨酯技术对家电行业持续 发展的 贡献(定稿)》.doc_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

论文(论文)聚氨酯技术对家电行业持续 发展的 贡献(定稿) 聚氨酯技术对家电行业持续发展的贡献中村富士夫焦建清,叶利(陶氏化学日本公司)(陶氏化学中国公司)摘要自1987年蒙特利尔议定书生效以来,硬质聚氨酯泡沫工业尤其是家电行业积极开展CFC的废止工作。 冰箱制造商及聚氨酯原材料供应商做了大量的工作来寻找CFC-11的替代发泡剂。 替代发泡剂的选择因地而异在北美,HCFC-141b由于易操作及低导热系数等特点被广泛使用;欧洲由于成本及环保的原因,主要使用环戊烷及其与异戊烷或异丁烷的混合物;至于亚太地区,由于行业结构及法规的多样性1,替代形势则较为复杂。 除这些外部因素外,冰箱制造商还必须考虑许多与自身业务有关的内部因素,如安全操作、生产效率、较少的资金投入、产品的长期质量及应用新发泡剂的灵活性。 作为一个全球性的聚氨酯原材料供应商,陶氏化学公司开发了针对各种发泡剂的硬质聚氨酯冰箱泡沫体系,并根据各地区冰箱客户的不同要求提供最佳的解决方案。 详细阐述了陶氏化学公司开发的各种替代发泡剂技术,同时通过模拟计算清楚地表明泡沫导热系数(K值)、二氧化碳排放量的减少以及典型冰箱的整体能耗之间的关系,快速脱模体系及低密度体系通过制造过程中能源消耗和原材料的降低同样对全球环境产生正面影响,由此表明聚氨酯技术在中国及其它发展中国家冰箱行业的持续发展中对全球环境的贡献。 关键词发泡剂;CFC替代;聚氨酯;泡沫塑料;家用电器1概述自1987年蒙特利尔议定书生效以来,硬质聚氨酯泡沫工业尤其是家电行业积极开展CFC的废止工作。 冰箱制造商及聚氨酯原材料供应商做了大量的工作来寻找CFC-11的替代发泡剂。 替代发泡剂的选择因地而异在北美,HCFC-141b由于易操作及低导热系数等特点被广泛使用;欧洲由于成本及环保的原因,主要使用环戊烷及其与异戊烷或异丁烷的混合物;至于亚太地区,由于法规、市场结构和冰箱设计的多样性,替代形势则较为复杂。 不管怎样,环戊烷因其在环境和成本方面的优势被普遍使用。 表1列出了各种替代发泡剂的物理特性及环境性质如ODP和GWP等。 表1各种替代发泡剂特性比较沸点mW/(mK)32.19.8发泡剂名称HCFC-141b分子式气体热导率(25)蒸气压(20)kPa69ODP GWP可燃性低高高高低无无大气生命时间(年)810CH3CCl2F0.11630环戊烷异戊烷异丁烷HFC-245fa C5H1049.512.6340110.05C5H122813.8800110.03C4H101215.9299050.02CHF2CH2CF315.312.21240820710HFC-134a CH2FCF3267814.356xx001416二氧化碳CO216.3565501120200从表1中可以很显然地看出,在HCFC-141b废止后(许多国家计划在xx年),所有的替代发泡剂将不含ODP值,因而地球温室效应(GWP)将成为发泡剂选择的下一个重点。 虽然碳氢类及碳氟氢类发泡剂都被认为是未来10年主要的替代发泡剂,碳氢类发泡剂在地球温室效应上有优势。 但是如果两类发泡剂制得的泡沫导热系数差异很大的话,由于使用低K值泡沫体系的冰箱能耗较低,二氧化碳排放量减少,地球温室效应的差异将会得到部分补偿。 众所周知,在中国因能源消耗而产生的二氧化碳排放量是相当高的(见图1),考虑到中国的高速发展,如何在能源的供求两方面减少二氧化碳的排放成为改善全球环境的迫切任务。 本文的目的旨在就这两类主要替代发泡剂技术对全球环境的影响进行详细的阐述。 在本文中,我们同时也从以下三个方面简要说明聚氨酯技术对全球环境的贡献1)通过节约能源减少二氧化碳的排放2)通过减少原材料的使用而保护资源3)通过生产效率改善而节约能源及资源内环GDP外环因产能而排放的CO2图1全球各地区GDP与二氧化碳排放量比例(1998年)Energy andEconomy Statistics(IEA,xx)目前亚洲国家特别是中国能源紧缺状况日趋严重,因而控制二氧化碳的排放显得尤为重要。 在本文中,我们以低K值泡沫体系为例来模拟二氧化碳排放量的减少。 2实验部分所有实验结果都是通过聚氨酯硬泡的标准测试方法测得密度:ASTM D1622压缩强度:ASTM D1621导热系数(K值):ASTM C518用于测试物性的泡沫由可操作碳氢发泡剂及低沸点发泡剂的高压发泡机在如图2所示的标准模具中制备,本文中介绍的所有泡沫体系都已用于实际生产或至少已在生产线上经过验证。 3结果与讨论3.1碳氢类发泡体系我们在实验室开发和评估了下列六个发泡体系-普通HCFC-141b发泡体系A(参考体系)-普通环戊烷发泡体系B-低K值环戊烷发泡体系C-快速离模环戊烷发泡体系D-低密度环/异戊烷混合发泡体系F-低密度环戊烷/异丁烷混合发泡体系E图2标准模具所有这些体系目前或正在冰箱生产线上正常使用,或至少已在客户的生产线上经过验证确认。 这些体系的泡沫物性如表2所示,从表2中我们可以得出以下结论1)普通环戊烷发泡体系的泡沫K值比普通HCFC-141b发泡体系高11.6%;2)低K值环戊烷发泡体系的泡沫K值仍比HCFC-141b发泡体系高6.3%,但比普通环戊烷发泡体系改进了4.7%;3)快速离模环戊烷发泡体系在同等试验条件下的离模膨胀值比普通环戊烷发泡体系改进了64%;4)使用环/异戊烷或环戊烷/异丁烷混合发泡技术,可以分别降低泡沫密度4%和7%。 表2碳氢发泡体系的泡沫物性比较HCFC-141b参考体系烷体系A BPAPI*27PAPI274543353614515011921.222.2普通环戊低K值环戊烷体系C PAPI27343717020.22.5快速离模环戊烷体系D PAPI27383615021.10.8环戊烷/异丁烷体系E PAPI27PAPI274333.514021.51.8环/异戊烷体系F多元醇异氰酸酯拉丝时间/s模塑密度/kgm10%压缩强度/kPa24泡沫K值/mW(mK)离模膨胀/%注*陶氏化学公司商标。 4534.514521.51.633.2碳氟氢类(HFC)发泡体系同碳氢类发泡体系一样,我们在实验室进行下列发泡体系的开发和评估-普通HCFC-141b发泡体系A(参考体系)-普通HFC-245fa发泡体系G-低K值HFC-245fa发泡体系H-普通HFC-134a发泡体系I-低K值HFC-134a发泡体系J泡沫物性如表3所示,从表3中我们可以得出以下结论1)普通HFC-245fa发泡体系的泡沫K值比参考体系A高出5%左右,但密度可降低11.4%,同时脱模膨胀可改善75(从2降为0.5);2)低K值HFC-245fa发泡体系H的泡沫K值比普通HFC-245fa体系改进5%左右,其实测数值(19.1mW/mK)与参考体系A非常接近(19.0mW/mK);3)普通HFC-134a发泡体系I的K值比参考体系高15.3%;4)与普通HFC-134a发泡体系相比,低K值HFC-134a发泡体系J的泡沫K值改进了3.2%。 表3碳氟氢类(HFC)发泡体系的泡沫物性比较HCFC-141b参考体系HFC-245fa体普通系G低K值HFC-245fa体系H PAPI273333.515519.11.7普通HFC-134a体系I PAPI274033.513021.90.7低K值HFC-134a体系多元醇异氰酸酯拉丝时间/s模塑密度/kgm10%压缩强度/kPa泡沫K值/mW(mK)离模膨胀率/%A JPAPI274535145192PAPI27333112520.10.5PAPI27323414021.21.2313.3二氧化碳排放减少量的模似3.3.1假设不用说,上述3.1和3.2部分的结果仅仅只能代表泡沫性能可能改善的范围,这些数据将随着配方和发泡生产条件的不同而有所不同。 但是为了简化计算,我们决定用这些数据来模拟二氧化碳排放量的减少。 在冰箱工业,我们都知道冰箱能耗改善百分率是泡沫导热系数改善百分率的一半,举个例子来说,如果导热系数改善了10,那么冰箱能耗将改善5。 当然这个比率将随着冰箱设计和压缩机性能的不同而不同。 但是不管怎样,我们决定用这个比率来模拟。 在计算时我们还作了以下一些假设-在中国用普通环戊烷体系生产的冰箱的平均容积和能耗分别为200L和350kWh/a;-在中国每消耗1kW能量将释放0.65kg二氧化碳;-中国每年冰箱产量为1500万台;-冰箱平均寿命为10年;-在冰箱寿命期内能耗无变化(10年)。 本文以下部分的模拟计算都基于上述假设的基础上。 3.3.2二氧化碳的排放表4所列的是普通环戊烷体系与各种低导热系数发泡体系二氧化碳排放减少量的比较。 累积数据这一行表示当在中国生产的冰箱(xxxx年)全部转换成所在列的发泡体系时的二氧化碳总的排放减少量。 从表4我们可以明显的看出,在中国从xx至xx年二氧化碳累积排放减少量是一个不容忽视的量。 而且随着今后10年内技术的不断发展这必将进一步加速减少二氧化碳的排放。 表4低导热系数发泡体系二氧化碳的排放减少量发泡体系普通环戊烷体系低导热系数环戊烷体系普通HFC-245fa体系20.1低导热系数HFC-245fa体系泡沫导热系数/mW(mK)导热系数降低率/%单台冰箱能耗降低率/%单台冰箱每年能耗降低量/(kWh/a)单台冰箱每年二氧化碳排放减少量/(kg/a)所有新生产的冰箱二氧化碳排放减少量/(t/a)标准标准标准标准标准5.581,9005.9288,80010.05.017.511.4171,000xxxx年CO2累积排放减少量(中国)/t标准4,504,5004,884,0009,405,0003.3.3环戊烷体系和HFC-245fa体系比较在选择发泡剂时必须考虑的一个问题即环境因素特别是温室效应。 从表4可以看出,即使是普通的HFC-245fa体系,其二氧化碳的排放量也比低导热系数的环戊烷体系低。 更不用说低导热系数的HFC-245fa体系了,其二氧化碳的排放减少量是其它体系的二倍。 但是另外一方面,从表1中可以看出,与环戊烷相比HFC-245fa具有较高的温室效应。 现在我们以200L的冰箱为标准,将各种发泡剂对温室效应的影响以二氧化碳的量来表示(表5)。 在表5中,如果冰箱泡沫中所有的发泡剂都释放至空气中,那么其影响可以用二氧化碳的量来计算。 现在我们通过比较两种低导热系数体系(环戊烷和HFC-245fa)的二氧化碳的排放量来评估它们对温室效应的影响,冰箱的寿命为10年。 -由于HFC-245fa体系的能耗比环戊烷体系的低,因此与环戊烷体系相比,在这方面其二氧化碳的排放量可减少(11.45.5)kg10年59kg。 -但是如果所有的发泡剂都释放至空气中的话,HFC-245fa体系的二氧化碳释放当量将比环戊烷体系多205.7kg2.76kg202.9kg。 根据上述模拟,环戊烷看起来好像比HFC-245fa对环境更有利些,但是如发泡剂已在泡沫中分解而没有完全释放至空气中的话,情况必将有所不同。 表5发泡剂对温室效应的影响以二氧化碳的量来表示普通环戊烷体系烷体系低导热系数环戊普通HFC-245fa体系3160.571344.38203526155.1低导热系数HFC-245fa体系模塑密度/kgm每台200L冰箱泡沫用量/kg单冰箱泡沫的发泡剂量/kg发泡剂的相对分子质量发泡剂量/mol GWP对应的二氧化碳的量/mol对应的二氧化碳的量/kg33670.35705.01155.02.42377.20.40705.71162.72.7671345.78204674通过降低泡沫密度节约原材料当我们考虑家电工业持续发展的时候,自然资源的节约是另外一个主要的因素。 我们可以通过开发低密度体系来降低生产泡沫的原料聚醚、异氰酸酯、催化剂、硅油的使用量。 正如我们前面提到的那样,如果我们用环/异丁烷体系来替代目前的普通环戊烷体系的话,单台冰箱泡沫重量可降低7,那么整个中国每年可节约聚氨酯原材料7350t(7kg1500万台0.07)。 但是考虑到对泡沫导热系数的负面影响和操作异丁烷需投入一定的资金,那么其益处就不怎么明显。 3.3.5通过生产效率改善来节约资源通过对生产效率改善,聚氨酯技术可对资源的节约作出贡献,一般来说泡沫后膨胀从2降至0.8%,就意味着脱模时间可降低20至40。 这不仅能降低能耗而且能够减少人力和资金的投入。 总的来说,通过对自然资源的节约,它能对环境的改善带来一定程度的贡献。 但是这是很难评估的,因为其影响程度主要取决于工厂的设计和生产的方式。 4结论通过使用先进的原材料及配方技术,可以用较为经济的方式开发出很低导热系数的各种替代发泡剂体系,由此制得的泡沫具有极佳的导热系数和良好的工艺性。 这样的泡沫由于使用了无ODP的发泡剂并通过较好的能效减少了二氧化碳的排放而使生产的冰箱更加环保。 在另一方面,我们也开发了快速脱模(降低生产周期)泡沫体系和低密度泡沫体系,这些使我们在冰箱制造过程中节约了能源和使用较少的原材料(自然资源)。 陶氏化学公司针对市场中现有的各种发泡剂开发了低导热系数的泡沫体系,这些泡沫体系可通过较低的冰箱能耗而减少二氧化碳的排放,二氧化碳排放量的减少可通过现有的一些工业数据进行模拟计算。 快速脱模体系及低密度体系通过制造过程中能源消耗和原材料的降低同样对全球环境产生正面影响。 通过给客户提供最佳的解决方案,聚氨酯技术可以促进中国的冰箱工业持续发展。 致谢对于陶氏化学在Freeport,Meyrin及亚太地区的研发人员在本文撰写过程中给予的协助和支持表示衷心的感谢。 参考文献1Chang V,Jiao J,Ye R,Rigid ApplianceFoamsCurrent andFuture Technologiesin AsiaPacific.Utech Asiaxx作者简介中村富士夫先生毕业于日本庆应义塾大学并获有机化学硕士学位,他于1984年加入陶氏化学日本有限公司聚氨酯研发部门,过去19年在聚氨酯的许多应用领域从事相关技术工作,目前为聚氨酯硬泡及CASE的亚太区技术及研发经理。 焦建清先生于1991年毕业于上海交通大学高分子材料专业,毕业后在冰箱厂从事发泡技术工作多年,1997年加入陶氏化学(中国)有限公司,主要负责家电行业聚氨酯产品的配方开发及技术服务工作,目前为聚氨酯产品应用主任。 叶利先生于1988年毕业于江苏化工学院高分子材料专业,同年进入苏州香雪海电器有限公司从事聚氨酯发泡工作,1995年加入苏州三星电器有限公司担任化工工艺主管,1997年加入陶氏化学(中国)有限公司,主要负责家电行业聚氨酯产品的技术服务及开发工作。 目前为聚氨酯产品技术主任。 Polyurethane TechnologiesCan Contributeto SustainableGrowth ofAppliance IndustryJeffrey Jiao Jian-Qing Ricky Ye LiFujio Nakamura(Dow ChemicalChina)(Dow ChemicalChina)(Dow PolyurethanesJapan Ltd)ABSTRACT Sincethe MontrealProtocol in1987,rigid polyurethanefoam industries especially rigid appliance industry has proactively implemented CFCsphase-out program.Refrigerator manufacturersand thePU raw material suppliershave donesubstantial workto replaceCFC-11with alternativeblowing agents.The choiceof blowing agent depends on theregional requirements.In N.A.,HCFC-141b hasbeen monlyused due to itseasy handlingand low thermal conductivity.Cyclopentane andits mixtureswith isopentaneor isobutaneare popularin Europedue to the costand environmentalreason.In AsiaPacific,the situationis somewhatplicated because of theindustry structureand localregulatory issues1.In additionto theseoutside factors,each refrigeratormanufacturer mustconsider businessrelated mattersincluding safeoperation,effective productionprocess,less capital investment,long termquality of the products,and flexibilityof theplant toapply newblowing agentwhen required.As aglobal PU raw materialsupplier,The Dow Chemical Companyhas developed and suppliedrigid polyurethaneappliance foamsystems based on differentblowing agentsto offerthe besttechnical solutionsto customersin allregions.The objectiveof this paper isto give a detailedview of these blowing agents,and toillustrate thetechnical optionsfor each blowing agent.This paperalso describesa simulationwhich clearlydefines therelationship betweenfoam thermal conductivity(k-factor),CO2emission savingand theoverall energy consumption of a typicalrefrigerator.Fast demoldsystems and low-density foamsystems canalso contribute to global environment throughenergy andraw materialsreduction.It clarifieshow PUtechnology can contribute to global environmentto securesustainable growth of refrigeratorindustry especially in Chinaand otherdeveloping countries.INTRODUCTION Sincethe MontrealProtocol in1987,rigid polyurethaneindustriesespeciallyrigidappliance industryhasproactivelyimplementedCFC phase-out program.Refrigerator manufacturersand thePUrawmaterial suppliershave donesubstantial workto replaceCFC-11with alternativeblowing agents.The choiceof blowing agent dependson theregional requirements.In N.A.,HCFC-141b hasbeen monlyused dueto itseasy handlingandlowthermal conductivity.Cyclopentane andits mixtureswith isopentaneor isobutaneare popularin Europedueto the costand environmentalreason.In AsiaPacific,the situationis somewhatplicated becauseof itsdiversified regulatoryrequirements,market structuresand refrigeratordesigns.However,cyclopentane hasbeen themost popularblowing agentbecauseofits environmentaland costadvantages.The physicalproperties andenvironmental measuressuch asODP andGWP ofeach blowing agent are shown in Table1.In Table1,it isobvious thatafter phasingout ofHCFC-141b,which isplanned inthis yearin mostof countries,all the blowing agentswill beODP free,thus the GWP isthe nextfocus inselection of blowingagent.Although bothhydrocarbons andHFCs areconsidered tobe majorblowing agentsin thefirst decadeof21st century,hydrocarbons haveadvantage onthis factor.But if there isbig gapin foamthermalconductivitybetween thesetwo typesof blowing agents,theGWPdifference shouldbe pensatedby lessCO2generation byits lowenergy consumption.Table1.Properties of blowing agentsGas k-factor25(mW/mK)20(bar)32.19.849.512.6Blowing agentFormula BoilingPoint()Vapor pressureODP GWPFlammability Atmosphericlife time(yrs)HCFC-141b CH3CCl2F Cyclo-pentane Iso-pentane Iso-butane HFC-245fa CHF2CH2CF3HFC-134a CH2FCF3CO20.690.340.116300Low High8100.05C5H1011C5H12C4H1028-1215.3-26-7813.815.912.214.391.245.6256.55000001158xx001High HighLow NoneNone0.030.027101416120200CO2It iswell known that CO2emission forenergy ishigh in China(Figure1).Considering Chinas rapidgrowth rate,saving of CO2emission inboth supplyand demandsides ofenergy is an urgentissue forglobalenvironment.The objectiveof this paper isto givea clearpicture regardingcontributions of polyurethane technologiesto globalenvironment byusing thesetwo majorblowing agents.In thispaper,we alsotried tofigure outcontributions of PU technologieson the following threeaspects.4)Reduction of CO2emission throughenergy saving5)Resource conservation by applyingless raw materials6)Energy andresource savingthrough effectiveproduction Amongthese threeaspects,CO2emission shouldbe mostcritical oneconsidering currentenergy sourcesin Asiancountries especiallyin China.In thispaper,we simulatedhow muchCO2emission could be saveby developing lowthermalconductivity foams.1U.S.A.2EU3PRC4Russia5Japan6Rest ofworld Figure1.Global GDPand CO2emission (1998)Source:Energy andEconomy Statistics(IEA,xx)EXPERIMENTAL Percent(%)All theexperimental results were obtainedby the following standardtest methodsofpolyurethanerigid foams:Density:ASTM D1622Compressive strength:ASTM D1621Thermal conductivity(k-factor):ASTM C518All the foams wereprepared byhigh-pressure injection foaming machines,which weremodified forhydrocarbon andLBBA(Low boilingpoint blowingagent)handling.The foamsamples forphysical propertytesting andbasic processingcheck wereobtained fromstandard moldssuch asFigure2.All systems introduced inthispaperwere practicedin actualproductions or at leastconfirmed theperformance throughline trials.Figure2.Standard moldRESULTS ANDDISCUSSION I.Hydrocarbon systemsWe developedand evaluatedthe followingsix foamsystemsin our laboratories;-Conventional HCFC-141b system(reference)-Conventional cyclopentane system-Low k-factor cyclopentane system-Fast demoldcyclopentane system-Low densitycyclopentane/isopentane system-Low densitycyclopentane/isobutane systemAll these systems arecurrently usedin actualrefrigerator productions,oratleast,confirmed theperformance throughproduction trialsat ourcustomers.The foamperformances ofthe systemsareshown in Table2.From Table2,the followingresults wereobtained:5)Compared toHCFC-141b,conventional cyclopentane system showed an11.6%worse foam k-factor.6)Low k-factor cyclopentane system showedstill a6.3%worse k-factor thanHCFC-141b system,but a4.7%improved valuethan conventional cyclopentane system.7)Fast demoldcyclopentane systemshoweda64%(0.8%vs.2.2%)better post expansion valuethan conventional cyclopentanesystem.8)By applyingcyclopentane/isopentane andcyclopentane/isobutane mixedblowing agents,we couldreduce foam density by4%and7%respectively.Table2.Foam performancesof hydrocarbon systems HCFC-141b CP,Conv.CP,Low KCP FastDMT CP/IB CP/IP Blowing agent Polyol*Gel time(sec)Molded Density(kg/m3)CS10%(kPa)A4535145192B433615021.22.2C343717020.22.5D383615021.10.8E4333.514021.51.8F4534.514521.51.6k factor24(mW/mK)Post Expansion(%)*Isocyanate isthe same(PAPI27of TheDow ChemicalCompany)II.HFC systemsSame ashydrocarbonsystems,we developedand evaluatedthefollowingfive systemsinourlaboratories;-HCFC-141b system(reference)-Conventional HFC-245fa system-Low k-factor HFC-245fa system-Conventional HFC-134a system-Low k-factor HFC-134a systemThe foamperformances areshown inTable3.From Table3,thefollowingresultswereobtained:5)Compared toHCFC-141b system,conventional HFC-245fa systemgave a5.8%worse foamk-factor.But an11.4%foam densityreduction anda75%(2%vs.0.5%)improvement ofpost expansioncould beobserved.6)Low k-factor HFC-245fa systemgave a5%improved k-factor thanconventional HFC-245fa system.And the k-factor(19.1mW/mK)is veryclosed tothek-factor ofHCFC-141b system(19.0mW/mK)7)Conventional HFC-134a systemgave a15.3%worse k-factor thanHCFC-141b system.8)Low k-factor systemgave a11.6%worse k-factor thanHCFC-141b system.And theimprovement paredto conventionalHFC-134a systemwas3.2%.Table3.Foam performancesof HFCsystems HCFC-141b HFC-245fa HFC-245fa HFC-134a HFC-134a AG Conv.Conv.4533Molded Densitykg/m335CS10%kPa145k factor24oC(mW/mK)19Post Expansion,%2*Isocyanate isthe same(PAPI27of TheDow ChemicalCompany)Polyol*Gel time(sec)H IJ Low K3333.515519.11.7Conv.4033.513021.90.7Low K323414021.21.23112520.10.5III.Simulations of CO2emission saving1)Assumptions Needlessto say,the resultsobtained insection Iand IIonly representpossible rangesof performanceimprovements.The figuresshould varyby formulationsand foamingconditions.But tosimplify thecalculation,we decided to usethese figuresfor simulationofCO2saving.In refrigeratorindustry,it isknownthatthe energy consumption ofa refrigeratorcan beimproved about a halflevel of foamk-factor improvement.For instance,if foamk-factor isimproved by10%,we canexpect abouta5%improvement in energy consumption oftherefrigerator.Of coursethis ratioshould varyby the design ofrefrigerator andperformance ofthe pressor.But wedecidedtouse thisratio forsimulation.Other assumptionsfor thecalculation are:-Average sizeand energyconsumptionofconventionalcyclopentaneblown foamrefrigerators produced in Chinais200L and350kWh/year respectively.-CO2emission perkWh is0.65kg-CO2/kWh in China.-Annual productionof refrigeratorsin Chinais15million units.-Average lifetimeofa refrigerator is10years.-No changeinenergyconsumption bygas diffusioc.throughout thelifetime(10years).The simulationsin thenext sectionwere calculatedbasedonthe assumptionsabove.2)CO2emission Possible CO2saving byapplying low k-factor systemfor each blowingagentsystem isshowninTable4in parisonwith theconventionalcyclopentanesystem.The aumulatednumber meanspossible CO2saving whenall therefrigerators newlyproducedinChina areconverted tothe system.From Table4,it isobvious thataumulated CO2saving isnot negligiblelevel eveninChinaonly.And furthertechnology developmentduring the10years periodshould aeleratethe reductionofCO2emission furthermore.Table4.PossibleCO2emission saving inChina by low k-factor systemCon.CP systemLow KCP system Conv.HFC-245fa system20.1LowKHFC-245fa system19.1Foam k-factor(mW/mK)21.220.2k-factor reduction(%)StandardEnergy saving as a refrigerator(%)StandardEnergy savingas arefrigerator(kWh/year)StandardCO2savingas arefrigerator(kg-CO2/year)Standard5.55.9211.4CO2saving bynew refrigerators(MT-CO2/year)Standard81,90088,800171,000Aumulated(xx-xx)CO2savinginChina(MT)Standard4,504,5004,884,0009,405,0003)Cyclopentane vs.HFC-245fa Theremust bea questionabout choiceof blowingagent forenvironment especiallyin terms of global warming issue.In Table4,even conventionalHFC-245fa systemcan savehigher amount ofCO2to lowk-factor cyclopentanesystem.And incase oflowk-factor HFC-245fa system,it cansave doubleamountofthesesystems.On theother hand,HFC-245fa hasmuch higherGWP paredto cyclopentaneas showninTable1.And the impact ofeachblowingagent toglobal warmingwas convertedas CO2amount fora standard200L refrigerator(Table5).In Table5,the impactis calculatedas CO2amount ifthe blowingagent in thefoamfor therefrigerator ispletely released tothe air.Now wecan evaluatecyclopentane andHFC-245fa in termsofglobalwarmingissue byparing eachlowk-factor system.In10years lifetime:-HFC-245fa systemgave-(11.45.5)kg10years=59kg ofCO2saving tocyclopentanesystemthrough lessenergyconsumption-HFC-245fa haspenalty of-205.7kg2.76kg=202.9kg ofCO2if alltheblowingagent isreleasedtotheairAording tothis simulation,cyclopentane looksmore environmentallyfriendly blowingagent thanHFC-245fa.But thesituation shouldbe differentiftheblowingagent in thefoam isproperly recoveredor deposed.Table5.Impact ofblowingagentsas CO2amount Foamweight for200L refrigerator(kg/unit)System Moldeddensity(kg/m3)Blowinga

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论