




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
抽象函数的定义域一已知的定义域,求复合函数的定义域由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若的定义域为,求出中的解的范围,即为的定义域。二:已知复合函数的定义域,求的定义域方法是:若的定义域为,则由确定的范围即为的定义域。三:已知复合函数的定义域,求的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由定义域求得的定义域,再由的定义域求得的定义域。四:已知的定义域,求四则运算型函数的定义域 若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。例1.已知函数的定义域为,求的定义域分析:若的定义域为,则在中,从中解得的取值范围即为的定义域本题该函数是由和构成的复合函数,其中是自变量,是中间变量,由于与是同一个函数,因此这里是已知,即,求的取值范围解:的定义域为,故函数的定义域为例2.已知函数的定义域是,求的定义域。分析:分别求f(x+a)与f(x-a)的定义域,再取交集。解:由已知,有,即函数的定义域由确定函数的定义域是例3.若函数f(x+1)的定义域为,2,求f(x2)的定义域分析:已知f(x+1)的定义域为,2,x满足x2,于是x13,得到f(x)的定义域,然后f(x2)的定义域由f(x)的定义域可得解:先求f(x)的定义域:由题意知x2,则x13,即f(x)的定义域为,3,再求fh(x) 的定义域: x23,解得x或xf(x2)的定义域是x|x或x练习1. 设函数的定义域为,则(1)函数的定义域为_。(2)函数的定义域为_。分析:做法与例题1相同。解:(1)由已知有,解得故的定义域为(2)由已知,得,解得故的定义域为2、已知函数的定义域为,则的定义域为_。分析:做法与例题2相同。解:由,得所以,故填3、已知函数的定义域为,则y=f(3x-5)的定义域为_。分析:做法与例题3相同。解:由,得所以,所以03x-51,所以5/3x2.4、设函数y=f(x)的定义域为0,1,q求y=f(定义域。分析:做
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省太原市晋源区三校2024-2025学年八年级下学期3月月考生物试题(含答案)
- 辽宁省抚顺市2024-2025学年七年级上学期10月月考道德与法治试卷(含答案)
- 2024-2025学年内蒙古鄂尔多斯市康巴什区八年级(上)期末数学试卷(含部分答案)
- 健身服务投诉处理机制-洞察及研究
- 基于拓扑优化的桥总成拓扑结构在极端工况下的静动态力学特性突变预警模型
- 基于工业4.0的分离齿合套智能化装配工艺与误差补偿系统研究
- 基于区块链技术的减速箱脂全球供应链质量追溯与风险预警平台设计
- 垂直领域知识图谱对割片精度的赋能机制
- 国际标准框架下多品牌交流钳表精度认证体系差异化困境
- 后疫情时代健康监测集成于门禁系统的伦理与成本博弈
- 高中英语2024届高考高频词汇(共1801个)
- 高校军事理论教育课教案
- 汉字历史-汉字的起源及形体演变(古代汉语课件)
- 吞咽障碍膳食营养管理中国专家共识(2019)解读
- 人教版部编版统编版一年级语文上册《我爱我们的祖国》课件
- 装配式建筑装饰装修技术 课件 模块三 装配式吊顶
- 挤压与膨化技术
- 艾媒咨询:2021年中国企业数字化发展研究报告
- 汽车吊吊装专项施工方案
- 住院医师规范化培训临床小讲课的设计与实施培训课件
- 振动型式试验报告范本
评论
0/150
提交评论