分式整章教案.doc_第1页
分式整章教案.doc_第2页
分式整章教案.doc_第3页
分式整章教案.doc_第4页
分式整章教案.doc_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十六章 分式一、教学内容:分式的概念、基本性质、约分与通分,加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。全章共包括三节:161 分式 162 分式的运算 163 分式方程二、本章知识结构框图:三、课程学习目标:1以描述实际问题中的数量关系为背景,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式。2类比分数的基本性质,了解分式的基本性质,掌握分式的约分和通分法则。 3类比分数的四则运算法则,探究分式的四则运算,掌握这些法则。4结合分式的运算,将指数从正整数扩大到全体整数,构建和发展相互联系的知识体系。5结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想。16.1.1 从分数到分式一教学目标(1)知识与技能目标:掌握分式概念,学会判别分式何时有意义,能用分式表示数量关系。(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。(3)情感与态度目标:通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造,体会分式的模型思想。二教学重难点重点:分式的概念;难点:识别分式有无意义;用分式描述数量关系三教法与学法主要采用“引导发现教学法”,借助于计算机课件,通过“问题情境建立模型解释、应用与拓展”的模式展开教学。四、例、习题的意图分析本章从实际问题引出分式方程=,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.1本节进一步提出思考让学生自己依次填出:,.为下面的观察提供具体的式子,就以上的式子,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是 (即AB)的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.归纳顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.希望老师注意:分式比分数更具有一般性,例如分式 可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数 .2思考引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B0时,分式 才有意义.3 例1填空是应用分式有意义的条件分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.4拓广探索中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零.这两个条件得到的解集的公共部分才是这一类题目的解.四教学过程发现新知1.创设情境:“代数式”庄园的果树上挂满了“整式”的果子:t,300,s,n,a-x,0,180(n-2),请你任选其中的两个,分别运用整式的四则运算,合成四个代数式;并与同组的伙伴交流你的成果。其中有新的一类代数式吗?请说一说。作这样的改动,是基于以下考虑:原有引例不仅要求学生用分式表示数量关系,还需要列出分式方程。针对我校学生的实际情况,在起始课上这样的要求过高,而从学生熟悉的整式及其运算入手,引导学生从旧知中发现新知,与学生的原有认知水平更相吻合,有利于探索活动的展开,培养学生的创新意识。 “好的教师不是在教数学而是激发学生自己去学数学”。用已给的7个整式进行代数式的构造时,学生可以写出多种多样的式子,里面既有单项式,也有多项式,还有分式。通过学生对自己所构造的代数式进行观察,创设发现情境,学会把自己的活动作为思考的对象,更好地进行分式概念的建构活动。2.探索交流 :(1)议一议:你们所发现的这一类新代数式:,它们有什么共同特征?它们与整式有什么不同?(2)类比分数,概括分式的概念及表达形式被除数除数=商数 被除式除式 =商式 类比3 4 = n (a-x) =整数 整数 分数 整式 整式 分式(3)小组内互举例子,判定是否分式(二)再探新知如何识别分式有意义,是本节课的难点,也是探究学习的好素材。1.探究活动(1)填表:a-2-1012(2)概括分式在什么条件下有意义,对一般表达式里的分母B作出取值限定:B不能等于零首先是组织学生独立填写表格。表格的设计,旨在通过求分式的值,将“代数化”了的分式还原为学生熟悉的分数,通过填表,不同层次学生的发现将会有差异,此时正是倾听与交流的好时机,通过互相说服和推广,他们最终会达成共识:分式的值与字母取值有关,分式并不都有意义。继而引导学生通过再次类比分数,将陌生问题向熟悉问题转化,自主得出“分式有意义”的条件,同时渗透从特殊到一般的数学思想。2.例题与练习教学例1. 你知道吗:当x取什么值时分式有意义?(1) (2) (3)(三)应用新知 补例.面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2004公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务。如果设原计划每月固沙造林x公顷,那么原计划完成一期工程需要( )个月,实际完成一期工程用了( )个月。完成相应练习题。(四)深化拓展把下列各式写成分式,并试着赋予它实际意义1.1a 2.(v1t1+v2t2)(t1+t2) 能解释一些简单代数式的实际背景或几何意义是新课标中的明确要求。“赋予实际意义”对学生是个挑战,可以激发他们的思维和兴趣,活动过程中教师不仅注重学生是否给出了解释,更应关注学生是否进行了思考。提供的两个分式是初中阶段常用的模型。(五)小结巩固 小结:你这一节课有什么收获?(知识、方法、情感)课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式? (1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x与y的差于4的商是 .2当x取何值时,分式 无意义?3. 当x为何值时,分式 的值为0?16.1.2 分式的基本性质一、教学目标1理解并掌握分式的基本性质及变号法则,并能运用这些性质进行分式的恒等变形2通过分式的恒等变形提高学生的运算能力3渗透类比转化的数学思想方法二、教学重点和难点1重点:理解并掌握分式的基本性质,这是学好本章的关键2难点:灵活运用分式的基本性质和变号法则进行分式的恒等变形三、教学方法:分组讨论法四、教学手段:幻灯片五、例、习题的意图分析1例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2例3、例4的目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含-号”是分式的基本性质的应用之一,所以补充例5.六、教学过程(一)复习提问:1分式的定义? 2分数的基本性质?有什么用途?(二)新课1类比分数的基本性质,由学生小结出分式的基本性质。2加深对分式基本性质的理解:教学例2。把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据练习1:化简下列分式(约分)(1) (2) (3)教师给出定义:把分式分子、分母的公因式约去,这种变形叫分式的约分.问:分式约分的依据是什么?分式的基本性质在化简分式 时,小颖和小明的做法出现了分歧:小颖: 小明:你对他们俩的解法有何看法?说说看! 教师指出:一般约分要彻底, 使分子、分母没有公因式.彻底约分后的分式叫最简分式.练习2(通分):把各分式化成相同分母的分式叫做分式的通分.(1) 与 (2) 与 (三)课堂小结1分式的基本性质2性质中的m可代表任何非零整式3注意挖掘题目中的隐含条件4利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理提供了便利条件课后练习1判断下列约分是否正确:(1)= (2)=(3)=02通分:(1)和 (2)和3不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.(1) (2) 16.2.1 分式的乘除一、教学目标1、理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题2、经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性。3、渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练二、教学重点和难点重点是掌握分式的乘除运算,难点是分子、分母为多项式的分式乘除法运算教学方法小组合作交流三、例、习题的意图分析1本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是,大拖拉机的工作效率是小拖拉机的工作效率的倍.引出了分式的乘除法的实际存在的意义,进一步引出从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a1,因此(a-1)2=a2-2a+1a2-2+1,即(a-1)2n)当m=n时,aman = 当m n 时,aman = 2、 任何数的零次幂都等于1吗?3、 规定其中a、n有没有限制,如何限制。 16.2.3整数指数幂(2)一、教学目标:1、能较熟练地运用零指数幂与负整指数幂的性质进行有关计算。2、会利用10的负整数次幂,用科学记数法表示一些绝对值较小的数。二、重点:幂的性质并会用于计算以及用科学记数法表示一些绝对值较小的数三、难点:理解和应用整数指数幂的性质。四、例、习题的意图分析会用科学计数法表示小于1的数. 用科学计算法表示小于1的数,运用了负整数指数幂的知识. 用科学计数法不仅可以表示小于1的正数,也可以表示一个负数.思考提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几.例11是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用用科学计数法表示小于1的数.五、教学过程:一、指数的范围扩大到了全体整数.1、探索现在,我们已经引进了零指数幂和负整数幂,指数的范围已经扩大到了全体整数.那么, 以前所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判断下列式子是否成立.(1); (2)(ab)-3=a-3b-3; (3)(a-3)2=a(-3)22、概括:指数的范围已经扩大到了全体整数后,幂的运算法则仍然成立。3、例1 计算(2mn2)-3(mn-2)-5并且把结果化为只含有正整数指数幂的形式。解:原式= 2-3m-3n-6m-5n10 = m-8n4 = 4 练习:计算下列各式,并且把结果化为只含有正整数指数幂的形式:(1)(a-3)2(ab2)-3; (2)(2mn2)-2(m-2n-1)-3.二、科学记数法1、回忆: 我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示成a10n的形式,其中n是正整数,1a10.例如,864000可以写成8.64105.2、 类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a10-n的形式,其中n是正整数,1a10.思考:对于一个小于1的正小数,如果小数点后至第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是多少?如果有m个0呢?3、探索:10-1=0.1 10-2= 10-3= 10-4= 10-5= 归纳:10-n= 4、纳米是非常小的长度单位,1纳米10-9米,把1纳米的物体放到乒乓球上,就如同把乒乓球放到地球上。1立方毫米的空间可以放多少个1立方纳米的物体? 我们知道:1毫米10-3 米 1纳米米.所以,1立方毫米的空间可以放个1立方纳米的物体。4、 练习本课小结:引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的性质仍然成立。科学记数法不仅可以表示一个绝对值大于10的数,也可以表示一些绝对值较小的数,在应用中,要注意a必须满足,1a10. 其中n是正整数16.3 分式方程(1) 一、教学目标1理解分式方程的意义2掌握可化为一元一次方程的分式方程的一般解法3了解分式方程解的检验方法4在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,进一步掌握可化为一元一次方程的分式方程的解法,熟练掌握解分式方程的技巧5通过学习分式方程的解法,理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想二、教学重点:(1)可化为一元一次方程的分式方程的解法(2)分式方程转化为整式方程的方法及其中的转化思想三、教学难点:检验分式方程解的原因四、疑点及分析和解决办法:解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根让学生在学习中讨论从而理解、掌握五、教学方法启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法六、教学手段演示法和同学练习相结合,以练习为主七、例、习题的意图分析思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.归纳明确地总结了解分式方程的基本思路和做法.第二个思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及归纳出检验增根的方法. 习题第2题是含有字母系数的分式方程,对于学有余力的学生,教师可以点拨一下解题的思路与解数字系数的方程相似,只是在系数化1时,要考虑字母系数不为0,才能除以这个系数. 这种方程的解必须验根.八、教学过程(一)复习及引入新课1提问:什么叫方程?什么叫方程的解?这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程(二)新课板书课题。分母里含有未知数的方程叫分式方程以前学过的方程都是整式方程练习:判断下列各式哪个是分式方程先由同学讨论如何解这个方程在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母(三) 应用一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?(四)总结解分式方程的一般步骤:1在方程的两边都乘以最简公分母,约去分母,化为整式方程2解这个方程3把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解,必须舍去(五)练习补充练习:课后练习1解方程 (1) (2) (3) (4) 2X为何值时,代数式的值等于2?16.3 分式方程(2)一、教学目标:1会分析题意找出等量关系.2会列出可化为一元一次方程的分式方程解决实际问题.二、重点难点:1重点:利用分式方程组解决实际问题.2难点:列分式方程表示实际问题中的等量关系.3认知难点与突破方法设未知数、列方程是本章中用数学模型表示和解决实际问题的关键步骤,正确地理解问题情境,分析其中的等量关系是设未知数、列方程的基础. 可以多角度思考,借助图形、表格、式子等进行分析,寻找等量关系,解分式方程应用题必须双检验:(1)检验方程的解是否是原方程的解;(2)检验方程的解是否符合题意.三、例、习题的意图分析例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.例4是一道行程问题的应用题也与旧教材的这类题有所不同(1)本题中涉及到的列车平均提速v千米/时,提速前行驶的路程为s千米, 完成. 用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2)例题中的分析用填空的形式提示学生用已知量v、s和未知数x,表示提速前列车行驶s千米所用的时间,提速后列车的平均速度设为未知数x千米/时,以及提速后列车行驶(x+50)千米所用的时间.这两道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案.教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务.特别是题目中的数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力.四、教学过程(一)复

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论