第10章离散时间系统及卷积.ppt_第1页
第10章离散时间系统及卷积.ppt_第2页
第10章离散时间系统及卷积.ppt_第3页
第10章离散时间系统及卷积.ppt_第4页
第10章离散时间系统及卷积.ppt_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十章离散时间系统及卷积 10 1离散时间系统 1 离散系统的概念 离散时间系统是指输入及输出信号均是离散信号的系统 2 离散系统的互联 输出 a 系统的级联 b 系统的并联 c 系统的混联 3 离散时间系统的模型 10 2离散时间系统的分类 1 线性系统 2 时不变系统 3 因果系统 4 稳定系统 对有界输入信号的响应还是有界信号的系统是稳定系统 或者说 如果输入信号的幅度限制在某个范围之内 则输出信号的幅度也限制在某个范围之内 10 3离散时间系统的描述 1 系统函数 对应连续时间系统中的h t 离散时间系统中有h n 2 系统函数的物理含义 3 从系统函数到卷积 系统 h n n n n T f n 系统 h n f 0 t 于是输入信号f n 的输出就等于一系列h n 经过加权和移位 的叠加 T f t h n 1 f 1 t h n k f k t s t 于是 借助系统函数 即冲激响应函数 我们就在系统的输入信号与输出信号之间建立了一种明确的数学关系 这种数学关系就是卷积关系 4 卷积的性质及一类特殊的卷积 卷积具有如下重要性质 交换率 s n h n h n s n 分配率 s n h1 n h2 n s n h1 n s t h2 n 5 一类特殊的卷积 h n n 的系统又被称为恒等系统 10 4离散互联系统的冲激响应 1 级联系统 系统1 输入 系统2 输出 h1 n h2 n 系统h n 此种情况下 系统的冲激响应函数 h n h1 n h2 n 2 并联系统 h1 n h2 n 系统h n 此种情况下 系统的冲激响应函数 h n h1 n h2 n 系统1 输入 系统2 输出 3 混联系统 此种情况下 系统的冲激响应函数 h t h1 t h2 t h3 t h4 t h1 t h2 t h3 t h4 t 10 5卷积的频域性质 1 时域与频域的关系 时域卷积等价于频域乘积 即 于是 我们在系统冲激响应函数 输入信号 输出信号之间建立了联系 这种联系不仅体现在时域中 而且体现在频域中 基于这些联系 我们可以分析和解决很多问题 1 级联系统 系统1 输入 系统2 输出 h1 n h2 n 系统h n 此种情况下 系统的冲激响应函数 h n h1 n h2 n H H1 H2 2 并联系统 h1 n h2 n 系统h n 此种情况下 系统的冲激响应函数 h n h1 n h2 n H H1 H2 系统1 输入 系统2 输出 3 混联系统 此种情况下 系统的冲激响应函数 h n h1 n h2 n h3 n h4 n H H1 H2 H3 H4 h1 n h2 n h3 n h4 n 2 输出信号的求解 应当注意的是 有些情况下 采用时域法求解较为容易 而有些情况下 采用频域法较为方便 举例 si n h n n n si 0 si 1 si 0 引起的输出 2h n si 1 引起的输出 3h n 1 n n 总的输出 2h n 3h n 1 n 2 3 1 2 1 2 4 2 3 6 3 2 7 8 3 3 时域卷积等价与频域乘积的物理意义 从广义上看 任何一个系统h n 都可以看成是一个滤波器 因为它们均实现了一定的频率选择性 解释同连续时间系统 10 6系统冲激响应函数的求解 得到H 之后可以通过逆离散付里叶变换反解出系统冲激响应函数h n 10 7DFT和圆周卷积 1 园周移位 x n n 0 1 2 N 1的信号的圆周移位又写成N具体方法如下图 n X n n N n N 3 3 3 n N 3 n N 3 2 园周卷积 我们知道 前面介绍求解输出信号时可以采用频域法 即对输入x n 系统h n 求解输出y n 时 可以先求Y X H 再反变换回去得y n 不过 反变换涉及积分 不太方便计算机处理 问题 有没有其他的办法在频域也离散化 即根据Y k 来求解y n 回答 有 而且实际的处理中 结合FFT IFFT 就是用这种方法来处理的 我们知道 对x n h n n 0 N 其周期拓展后的信号的离散付里叶变换 DFT 为X k H k k 0 N 假设Y k X k H k 那么问题是 Y k 做逆离散付里叶变换 IDFT 得到的y n 是什么 举例来看 h n n 3 n 3 n 3 n 3 在 0 N 1 内 圆周移位N n 3 n 3 在 0 N 1 内 圆周移位N n 3 n 3 在 0 N 1 内 圆周移位N 回答 如不做特殊处理 园卷积与正常卷积不同 在做特殊处理之后 可以相同 问题 一个K点的h n 和一个L点的x n 正常卷积可以得到一个多少点的y n 回答 K L 1点 例如 h n 1 2 3 4 n 3 x n 1 2 2 1 n 3 h 0 m m 3 x m m 3 同理 h 1 m m 3 x m m 3 继续移动 最终正常卷积得到的y n 1 4 9 15 16 11 4 共7点下面看园周卷积 园周卷积 N m 3 x m m 3 解释 N是怎样得来的 h m m 3 h m m 3 周期延拓 m 3 取0 N 1点 m N 3 有了N 自然求解N就方便了 实际上就是不断地向右做园周移位 园周卷积 N m 3 x m m 3 依次有 y n 17 15 13 15 显然同前面的y n 不同 问题 如何处理才能使y n y n 回答 将K点的x n L点的h n 通过补0分别展成K L 1点的序列 再做园周卷积即可 还用上例 h n 1 2 3 4 0 0 0 n 7 x n 1 2 2 1 0 0 0 n 7 补0展长后的序列 展长后的园周卷积 N m 7 x m m 7 注 N的获取仍采用前面介绍过的方法 展长后的园周卷积 N m 7 x m m 7 依次可得y n 1 4 9 15 16 11 4 y n 上述方法的频域实现是 第一步 将K点的x n 和L点的h n 展成K L 1点的序列 第二步 分别做展长后的序列的离散付里叶变换X k 和H k 第三步 将X k 和H k 相乘得Y k 第四步 将Y k 做反离散付里叶变换得y n 即可 需要说明的是 展长序列的长度只要大于K L 1即可 故在实际使用中 往往选择一个长度 2M 该值是大于K L 1的且最贴近K L 1的2的整数次幂 当然也可以选其他的2的整数次幂 只要大于K L 1即可 但这样做会使运算量大增 所以谁也不这样用 于是可以利用FFT和IFFT完成上述步骤 具体描述如下 第一步 将K点的x n 和L点的h n 展成大于K L 1点且最贴近的2M长序列 第二步 分别做展长后的序列的FFT变换得X k 和H k 第三步 将X k 和H k 相乘得Y k 第四步 将Y k 做IFFT变换得y n 即可 10 8总结 这一章 我们介绍了离散时间系统的概念 及性质 线性 移不变 因果 稳定介绍了离散系统函数 及离散冲激响应函数 并从离散输出输入的关系引出离散卷积的概念 并介绍了离散卷积的性质 然后就离散输入输出之间的关系问题在时域和频域分别进行了讨论 即在时域内 输出信号是输入信号与冲激响应的卷积 在频域内 输出信号的频谱是输入信号

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论