




免费预览已结束,剩余3页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
外文翻译Electric Power SystemElectric Power System, components that transform other types of energy into electrical energy and transmit this energy to a consumer. The production and transmission of electricity is relatively efficient and inexpensive, although unlike other forms of energy, electricity is not easily stored ad thus must generally be used as it is being produced.Components of an Electric Power SystemA modern electric power system consists of six main components: (1) the power station, (2)a set of transformers to raise the generated power to the high voltages used on the transmission lines, (3) the transmission lines, (4) the substations at which the power is stepped down to the voltage on the distribution lines, (5) the distribution lines, and (6) the transformers that lower the distribution voltage to the level used by the consumers equipment.Power Station, the power station of a power system consists of a prime mover, such as a tribune driven by water, steam, or combustion gases that operate a system of electric motors and generators. Most of the worlds electric power is generated in steam plants driven by hydroelectric (water power), diesel, and internal-combustion plants.Transformers, Modern electric power systems use transformers to convert electricity into different voltages. With transformers, each stage of the system can be operated at an appropriate voltage. In a typical system, the generators at the power station deliver a voltage of from 1,000 to 26,000volts (v). Transformers step this voltage up to values ranging from 138,000 to 765,000 V for torture transfer on the distribution system. Another set of transformers step the voltage down again to a distribution level such as 2,400 or 4,160 V or 15, 27, or 33 kilovolts (kV). Finally the voltage is transformed once again the distribution transformed near the point of use to 240 or 120 V.Transmission Lines, The lines of high voltage transmission system are usually composed of wires of copper, aluminum-clad steel, which are suspended form tall latticework towers of steel by strings of porcelain insulators. By the use of clad steel wires and high towers, the distance between towers can be increased, and the cost of the transmission line thus reduced. In modern installations with essentially straight paths, high-voltage lines may be built with as few as six towers to the kilometer. In some areas high-voltage lines are suspended from tall wooden poles spaced more closely together.For lower voltage distribution lines, wooden poles are generally used rather than steel towers. In cites and other areas where open lines create a safety hazard or are considered unattractive, insulated underground cables are used for distribution. Some of these cables have a hollow core through which oil circulates under low pressure. The oil provides temporary protection from water damage to the enclosed wires should the cable develop a leak. Pipe-type cables in which three cables are enclosed in a pipe filled with oil under high pressure (14 kg per sq cm/200psi) are frequently used. These cables are used for transmission of current at voltage as high as 345,000V (or 345 kV).Supplementary Equipment Any electric-distribution system involves a large amount of supplementary equipment to protect the generators, transformers, and the transmission lines themselves. The system often includes devices designed to regulate the voltage or other characteristics of power delivered to consumers.To protect all elements of a power system from short circuits and overloads, and for normal switching operations, circuit breakers are employed. These breakers are large switches that are activated automatically in the event of a short circuit or other condition that produces a sudden rise of current. Because a current forms across the terminals of the circuit breaker at the moment where the current is interrupted, some large breakers (such as those used to protect a generator or a section of primary transmission line) are immersed in a liquid that is a poor conductor of electricity, such as oil, to quench the current. In large air-type circuit breakers, as well as in oil breakers, magnetic fields are used to break up the current. Small air-circuit breakers are used for protection in shops, factories, and in modern home installations. In residential electric wiring, fuses were once commonly employed for the same purpose. A fuse consists of piece of alloy with a low melting point, inserted in the circuit, which melts, breaking the circuit if current rises above a certain value. Most residences now use air-circuit breakers.Power FailuresIn most parts of the world, local or national electric utilities have joined in grid systems. The linking grids allow electricity generated in one area to be shared with others. Each utility that agrees to share gains an increased reserve capacity, use of larger, more efficient generators, and the ability to respond to local power failures by obtaining energy from a linking grid.These interconnected grids are large, complex systems that contain elements operated by different groups. These systems offer the opportunity for economic saving and improve overall reliability but can create a risk of widespread failure. For example, the worst blackout in the history of the United States and Canada occurred august 14, 2003, when 61,800 megawatts of electrical power was lost in an area covering 50 million people. (One megawatts of electricity is roughly the amount needed to power 750 residential homes.) The blackout prompted calls to replace aging equipment and raised questions about the reliability of the national power grid.Despite the potential for rare widespread problems, the interconnected grid system provides necessary backup and alternate paths for power flow, resulting in much higher overall reliability than is possible with isolated systems. National or regional grids can also cope with unexpected outages such as those caused by storms, earthquakes, landslides, and forest fires, or due to human error or deliberate acts of sabotage.Power qualityIn recent years electricity has been used to power more sophisticated and technically complex manufacturing processes, computers and computer network, and a variety of other high-technology consumer goods. These products and processes are sensitive not only to the continuity of power supply but also to the constancy of electrical frequency and voltage. Consequently, utilities are taking new measure to provide the necessary reliability and quality of electrical power, such as by providing additional electrical equipment assure that the voltage and other characteristics of electrical power are constant.Voltage Regulation long transmission lines have considerable inductance and capacitance. When current flows through the lines, inductance and capacitance have the effect of varying the voltage on the line as the current varies. Thus the supply voltage varies with the load. Several kinds of devices are used to overcome this undesirable variation in an operation called regulation of the voltage. The devices include induction regulation and three-phase synchronous motors (called synchronous condensers), both of which vary the effective amount of inductance and capacitance in the transmission circuit.Inductance and capacitance react with a tendency to nullify one another. When a load circuit has more inductive than capacitive reactance, as almost invariably occurs in large power systems, the amount of power delivered for a given voltage and current is less than when the two are equal. The ratio of these two amounts of power is called the power factor. Because transmission-line losses are proportional to current, capacitance is added to the circuit when possible, thus bringing the power factor as nearly as possible to 1. For this reason, large capacitors are frequently inserted as a part of power-transmission systems.World Electric Power Production Over the period from 1950 to 2003, the most recent year for which data are available, annual world electrical power production and consumption rose from slightly less than 1 trillion kilowatt-hours () to 15.9 trillion A change also took place in the type of power generation. In 1950 about two-thirds of the worlds electricity came from steam-generating sources and about one-third from hydro electric sources. In 2003thermal sources produced 65 percent of the power, but hydropower had declined to 17 percent, and nuclear power accounted for 16 percent of the total. The grown in nuclear power showed in some countries, notably the United States, in response to concerns about safety. Nuclear plants generated 20 percent of U.S. electricity in 2003; in France, the world leader, the figure was 78 percent.ConservationMuch of the worlds electricity is produced from the use of nonrenewable resources, such as natural gas, coal, oil, and uranium. Coal, oil, and natural gas contain carbon, and burning these fossil fuels contributes to global emissions of carbon dioxide and other pollutants. Scientists believe that carbon dioxide is the principal gas responsible for global warming, a steady rise in Earths surface temperature.Consumers of electricity can save money and help protect the environment by eliminating unnecessary use of electricity, such as turning off lights when leaving a room. Other conservation methods include buying and using energy-efficient appliances and light bulbs, and using appliances such as washing machines and dryers, at off-peak production hours when rates are lower. Consumers may also consider environmental measures such as purchasing “green power” when it is offered by a local utility, “Green power” is usually more expensive but relies on renewable and environmentally friendly energy sources, such as wind turbines and geothermal power plants.电力系统介绍电力系统把其它形式的能源转化为电能并输送给用户。尽管不同于其它形式的能源,电能不容易储存,一旦生产出来,必须得到使用,但是电力的生产和传输相对高效和廉价。电力系统的组成当今的电力系统由六个主要部分组成:电站,升压变压器(将发出来的电升压至传输线所需高电压),传输线,变电站(电压降至配电线电压等级),配电线路和降压变压器(将配电电压降至用户设备使用的电压水平)。 1、电站。电力系统的电站包括原动机,如由水,蒸汽驱动的涡轮,或者燃烧气体操控的电动机和发电机系统,世界上大多数的电能由煤炭、石油、核能或者燃气驱动的蒸汽发电厂产生。少量电能由水力,柴油和内燃机发电厂产生。2、变压器。现代电力系统使用变压器把电能转换为不同的电压。有了变压器,系统的每个阶段都能在合适的电压等级下运行。在典型的系统中,电站发电机发出的电压范围是1000伏到26000伏。变压器把电压升至138000到765000伏后,送至主传输线上。因为对于长距离传输,电压越高,效率越高。在变电站,电压被降至69000到138000伏,以便在配电系统中传输。另外一组变压器把电压进一步降至配电等级,如2400到4160伏,或者15,27,33KV。最终,在使用端,经配电变压器,电压再次被降至240V或120V。 3、传输线。高压传输系统通常由铜线、铝线或者镀铜、镀铝的钢线组成,它们悬挂在高大钢格构塔架上成串的断瓷质绝缘体上。由于含镀层钢线和铁塔的使用,增大了塔与塔之间的距离,降低了传输线的成本。在当前的直线安装中,每公里高压线只需建立6个铁塔。在一些地区,高压线悬挂于距离较近的木质电线杆上。对于低压配电线路,更多的使用木质电线杆,而不是铁塔。在城市和一些地区,明线存在安全危险或者被认为影响美观,所以使用绝缘地下电缆进行配电。一些电缆内核中空,供低压油循环。油可以为防止水对封闭线路的破坏提供临时保护。通常使用管式电缆,三根电缆放入线管中,并填满高压油。这些电缆用于传输高达345KV的电流。4、辅助设备。每个配电系统包含大量辅助设备来保护发电机、变压器和传输线。系统通常还包括用来调整电压或用户端其它电力特性的设备为了保护电力系统设施,防止短路和过载,对于正常的开关操作,采用断路器。断路器是大型开关,在短路时或者电流突然上升的情况下自动切断电源。由于电流断开时,断路器触点两端会形成电流,一些大型断路器(如那些用来保护发电机和主输电线的断路器)通常浸入绝缘液体里面,如油,以熄灭电流。在大型空气开关和油断路器中,使用磁场来削弱电流。小型空气开关用于商场,工厂和现代家庭设备的保护。在住宅电气布线中,以前普遍采用保险丝。保险丝由熔点低的合金组成,安装在电路中,当电流超过一定值,它会熔断,切断电路。现在绝大多数住宅使用空气断路器。供电故障世界上大多数地方,局部或全国电力设施都连成电网。电网可以使发电实现区域共享。同意共享的每个电力企业可以获得不断增加的储备功率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南昌校园安全教育主题展厅
- 累积滑移施工方案
- 保险公司营销策略方案
- 景区公众号活动方案策划
- 会计实习报告范文两篇
- 建筑车行坡道分析方案设计
- 会务会展活动施工方案
- 九年级化学第五单元定量研究化学反应第2节化学反应的表示练习试题以及答案(适合鲁教版)
- 城镇雨污管网施工方案
- 2025至2030年中国维生物磷酸酯镁市场分析及竞争策略研究报告
- 急诊icu管理制度
- T/CSBME 078-2024掌上超声仪临床应用规范
- T/CEMIA 012-2018光纤激光器用掺镱光纤
- T/BECA 0005-2023建筑垃圾再生回填材料
- 老年医学人才培训汇报
- 线下佣金结算协议合同
- 人工气道湿化管理
- 机关食堂服务员工作职责
- 2024秋七年级数学上册 第1章 有理数1.2 数轴、相反数和绝对值 2相反数教学实录(新版)沪科版
- 安全防坠网施工方案
- 六年级语文毕业考试真题集锦(共9套含答案)
评论
0/150
提交评论