![高一数学《基本初等函数》知识点总结[范本]_第1页](http://file1.renrendoc.com/fileroot_temp2/2020-3/10/271f7d12-6c9d-4200-90ce-6e571e71ad6c/271f7d12-6c9d-4200-90ce-6e571e71ad6c1.gif)
![高一数学《基本初等函数》知识点总结[范本]_第2页](http://file1.renrendoc.com/fileroot_temp2/2020-3/10/271f7d12-6c9d-4200-90ce-6e571e71ad6c/271f7d12-6c9d-4200-90ce-6e571e71ad6c2.gif)
![高一数学《基本初等函数》知识点总结[范本]_第3页](http://file1.renrendoc.com/fileroot_temp2/2020-3/10/271f7d12-6c9d-4200-90ce-6e571e71ad6c/271f7d12-6c9d-4200-90ce-6e571e71ad6c3.gif)
![高一数学《基本初等函数》知识点总结[范本]_第4页](http://file1.renrendoc.com/fileroot_temp2/2020-3/10/271f7d12-6c9d-4200-90ce-6e571e71ad6c/271f7d12-6c9d-4200-90ce-6e571e71ad6c4.gif)
![高一数学《基本初等函数》知识点总结[范本]_第5页](http://file1.renrendoc.com/fileroot_temp2/2020-3/10/271f7d12-6c9d-4200-90ce-6e571e71ad6c/271f7d12-6c9d-4200-90ce-6e571e71ad6c5.gif)
已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高一数学基本初等函数知识点总结一、指数函数(一)指数与指数幂的运算1根式的概念:一般地,如果,那么叫做的次方根,其中>1,且*u负数没有偶次方根;0的任何次方根都是0,记作。当是奇数时,当是偶数时,2分数指数幂正数的分数指数幂的意义,规定:,u0的正分数指数幂等于0,0的负分数指数幂没有意义3实数指数幂的运算性质(1);(2);(3)(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R注意:指数函数的底数的取值范围,底数不能是负数、零和12、指数函数的图象和性质a>10定义域R定义域R值域y0值域y0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在a,b上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;二、对数函数(一)对数1对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(底数,真数,对数式)说明:1注意底数的限制,且;2;3注意对数的书写格式两个重要对数:1常用对数:以10为底的对数;2自然对数:以无理数为底的对数的对数u指数式与对数式的互化幂值真数Nb底数指数对数(二)对数的运算性质如果,且,那么:1;2;3注意:换底公式(,且;,且;)利用换底公式推导下面的结论(1);(2)(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+)注意:1对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:,都不是对数函数,而只能称其为对数型函数2对数函数对底数的限制:,且2、对数函数的性质:a>10定义域x0定义域x0值域为R值域为R在R上递增在R上递减函数图象都过定点(1,0)函数图象都过定点(1,0)(三)幂函数1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数2、幂函数性质归纳(1)所有的幂函数在(0,+)都有定义并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴例题:1.已知a>0,a0,函数y=ax与y=loga的图象只能是2.计算:;=;=;=3.函数y=log的递减区间为4.若函数在区间上的最大值是最小值的3倍,则a=5.已知,(1)求的定义域(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年贵阳市第三中学招聘教师考试笔试试题(含答案)
- 2025年广州黄埔区残联招聘初级政府雇员考试试题(含答案)
- 量子测量网络创新创业项目商业计划书
- 冻鱼肝及鱼卵创新创业项目商业计划书
- 汽车自动化车灯制造创新创业项目商业计划书
- 现场抽样课件
- 量子密度测量创新创业项目商业计划书
- 金融大数据服务创新创业项目商业计划书
- 现场急救知识培训课件
- 2025年家具制造业个性化定制生产模式下的定制家具产业链分析报告
- 公司意识形态管理制度
- 微电网短期负荷预测-洞察阐释
- 月饼代销合同协议书
- 精神康复与躯体管理训练体系
- 移动式压力容器安全技术监察规程(TSG R0005-2011)
- 隧道运营养护管理手册上册
- 《废旧锂电池的回收与再利用》课件
- 汽车制造工艺技术课件:汽车总装生产工艺流程及检测工艺
- 硬笔书法训练行业深度调研及发展战略咨询报告
- 2024年中国心力衰竭诊断与治疗指南更新要点解读
- 医院医保智能审核与规则解释
评论
0/150
提交评论