



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
拉普拉斯变换是解常系数线性微分方程中经常采用的一种较简便的方法.其基本思想是,先通过拉普拉斯变换将已知方程化成代数方程,求出代数方程的解,再通过逆拉普拉斯变换,得到所求数值问题的解. 一 拉普拉斯变换的概念 定义 设函数f(t)的定义域为0,+),若广义积分0+f(t)e-ptdt对于p在某一范围内的值收敛,则此积分就确定了一个参数为p的函数,记作F(p),即F(p)=0+f(t)e-ptdt函数F(p)称为f(t)的拉普拉斯变换(或称为f(t)的象函数),表示为F(p)=Lf(t). 若F(p)是f(t)的拉氏变换,则称f(t)为F(p)的拉氏逆变换(或F(p)的象原函数),记作L-1F(p). 例1 求指数函数f(t)=eat(t0,a是常数)的拉氏变换. 解根据定义,有Leat=0+eate-ptdt=0+e-(p-a)tdt 这个积分在pa时收敛,所以有 Leat=0+e-(p-a)tdt=1/(p-a) (pa) (1) 例2 求一次函数f(t)=at(t0,a是常数)的拉氏变换. 解 Lat=0+ate-ptdt=-a/p0+td(e-pt) =-at/p e-pt0+a/p0+e-ptdt 根据罗必达法则,有 limt0+(-at/p e-pt)=-limt0+at/pept=-limt0+a/p2 ept 上述极限当p0时收敛于0,所以有limt0+(-at/pe-pt)=0 因此Lat=a/p0+e-ptdt =-a/p2e-pt0+=a/p2(p0) (2) 例3 求正弦函数f(t)=sint(t0)的拉氏变换. 解 Lsint=0+sinte-ptdt=-1/(p2+2) e-pt(psint+cost0+=/(p2+2) (p0) (3) 用同样的方法可求得 Lcost=p/(p2+2) (p0)(4) 二 拉普拉斯变换的基本性质 三 拉普拉斯变换的逆变换 四 拉普拉斯变换的应用25 用拉普拉斯变换方法解微分方程拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。这样就使方程求解问题大为简化。拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两部分。有关拉普拉斯变换(简称拉氏变换)的公式见附录一。应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么求取微分方程的拉氏变换式就更为方便,只要简单地用复变量来代替微分方程中的,代替,就可得到。应用拉氏变换法解微分方程的步骤如下:(1)对线性微分方程中每一项进行拉氏变换,使微分方程变为复变量的代数方程(称为变换方程)(2)求解变换方程,得出系统输出变量的象函数表达式。(3)将输出的象函数表达式展开成部分分式(部分分式展开法参见附录二)。(4)对部分分式进行拉氏反变换(可查拉氏变换表),即得微分方程的全解。举例说明【例2-7】设网络如图2-24所示,在开关闭合之前,电容上有初始电压。试求将开关瞬时闭合后,电容的端电压(网络输出)。解开关瞬时闭合,相当于网络有阶跃电压输入。故网络微分方程为消去中间变量,得网络微分方程为(2-44)对上式进行拉氏变换,得变换方程将输入阶跃电压的拉氏变换式代入上式,并整理得电容端电压的拉氏变换式可见等式右边由两部分组成,一部分由输入所决定,另一部分由初始值决定。将输出的象函数展成部分分式:或 (2-45)等式两边进行拉氏反变换,得(2-46)此式表示了网络在开关闭合后输出电压的变化过程。比较方程(2-45)和(2-46)可见,方程右端第一项取决于外加的输入作用1,表示了网络输出响应的稳态分量,也称强迫解;第二项表示的瞬态分量,该分量随时间变化的规律取决于系统结构参量、所决定的特征方程式(即)的根。显然,由于其特征根为负实数,则瞬态分量将随着时间的增长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025杭州大有供电服务有限公司招聘115人模拟试卷及答案详解(易错题)
- 2025年内江市市本级部分事业单位公开考核招聘工作人员(第二批)的模拟试卷及答案详解(各地真题)
- 2025年4月广东深圳市第二特殊教育学校面向2025年应届毕业生赴外招聘教师4人模拟试卷及一套答案详解
- 2025国家电网内蒙古新正产业发展有限公司高校毕业生招聘41人(第三批)模拟试卷及答案详解(夺冠)
- 2025年宁德市供电服务有限公司招聘30人模拟试卷及完整答案详解一套
- 2025江苏淮安市洪泽经济开发区投资控股集团有限公司招聘考前自测高频考点模拟试题及答案详解(必刷)
- 2025大唐锡林浩特电厂招聘专职消防员1人模拟试卷(含答案详解)
- 安徽省濉溪县2026届八年级数学第一学期期末联考模拟试题含解析
- 2025广东珠海市横琴粤澳深度合作区招聘公办幼儿园教职工(第一批)5人考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025福建厦门大学医学中心(厦门大学附属翔安医院)高层次人才招聘103人考前自测高频考点模拟试题有答案详解
- 《光伏发电工程工程量清单计价规范》
- 胆囊炎胆囊结石教学查房课件
- 【岩土工程施工技术实践实验报告2800字】
- 师宗县城市生活垃圾处理工程项目环评报告
- 中枢神经系统-脑梗死的影像表现(医学影像诊断学课件)
- DB14-T 2555-2022 费托合成异构烷烃生产规范
- 湖南省“西学中”人才培训项目申请审批表
- 【精】8 美丽文字 民族瑰宝 (课件)2023学年五年级上册道德与法治(部编版)
- YY/T 0801.2-2010医用气体管道系统终端第2部分:用于麻醉气体净化系统的终端
- YS/T 798-2012镍钴锰酸锂
- GB 29224-2012食品安全国家标准食品添加剂乙酸乙酯
评论
0/150
提交评论