




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、下面是按规律排列的一串数,问其中的第1995项是多少?解答:2、5、8、11、14、。 从规律看出:这是一个等差数列,且首项是2,公差是3, 这样第1995项=23(19951)=59842、在从1开始的自然数中,第100个不能被3除尽的数是多少?解答:我们发现:1、2、3、4、5、6、7、中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有1002=50组,每组3个数,共有503=150,那么第100个不能被3除尽的数就是1501=149.3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?.解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为: 198814=142,最小数与最大数相差28-1=27个公差,即相差227=54, 这样转化为和差问题,最大数为(14254)2=98。4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?解答:因为342828=3528=9801000,所以只有以下几个数: 342929=3529 343030=3530 343131=3531 343232=3532 343333=3533 以上数的和为35(2930313233)=54255、盒子里装着分别写有1、2、3、134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析: 假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目123134135=1361352=9180,918017=540, 135个数的和除以17的余数为0,而19+97=116,11617=614, 所以黄卡片的数是17-14=3。6、下面的各算式是按规律排列的:11,23,35,47,19,211,313,415,117, 那么其中第多少个算式的结果是1992?解答:先找出规律: 每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数。 因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3, 如果是1:那么第二个数为19921=1991,1991是第(1991+1)2=996项,而数字1始终是奇数项,两者不符, 所以这个算式是3+1989=1992,是(19891)2=995个算式。7、如图,数表中的上、下两行都是等差数列,那么同一列中两个数的差(大数减小数)最小是多少?解答:从左向右算它们的差分别为:999、992、985、12、5。 从右向左算它们的差分别为:1332、1325、1318、9、2, 所以最小差为2。8、有19个算式:那么第19个等式左、右两边的结果是多少?解答:因为左、右两边是相等,不妨只考虑左边的情况,解决2个问题: 前18个式子用去了多少个数? 各式用数分别为5、7、9、第18个用了5217=39个, 57939=396,所以第19个式子从397开始计算; 第19个式子有几个数相加? 各式左边用数分别为3、4、5、第19个应该是3118=21个, 所以第19个式子结果是397398399417=8547。9、已知两列数: 2、5、8、11、2(2001)3; 5、9、13、17、5(2001)4。它们都是200项,问这两列数中相同的项数共有多少对?解答:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、, 由于第一个数列最大为2(2001)3=599; 第二数列最大为5(2001)4=801。新数列最大不能超过599,又因为51249=593,51250=605, 所以共有50对。10、如图,有一个边长为1米的下三角形,在每条边上从顶点开始,每隔2厘米取一个点,然后以这些点为端点,作平行线将大正三角形分割成许多边长为2厘米的小正三角形。求边长为2厘米的小正三角形的个数,所作平行线段的总长度。解答: 从上数到下,共有1002=50行, 第一行1个,第二行3个,第三行5个,最后一行99个, 所以共有(1+99)502=2500个; 所作平行线段有3个方向,而且相同, 水平方向共作了49条, 第一条2厘米,第二条4厘米,第三条6厘米, 最后一条98厘米, 所以共长(2+98)4923=7350厘米。11、某工厂11月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人240人。如果月底统计总厂工人的工作量是8070个工作日(一人工作一天为1个工作日),且无人缺勤,那么,这月由总厂派到分厂工作的工人共多少人?解答:11月份有30天。 由题意可知,总厂人数每天在减少,最后为240人,且每天人数构成等差数列,由等差数列的性质可知,第一天和最后一天人数的总和相当于807015=538 也就是说第一天有工人538-240=298人,每天派出(298-240)(30-1)=2人, 所以全月共派出2*30=60人。12、小明读一本英语书,第一次读时,第一天读35页,以后每天都比前一天多读5页,结果最后一天只读了35页便读完了;第二次读时,第一天读45页,以后每天都比前一天多读5页,结果最后一天只需读40页就可以读完,问这本书有多少页?解答:第一方案:35、40、45、50、55、35 第二方案:45、50、55、60、65、40 二次方案调整如下: 第一方案:40、45、50、55、35+35(第一天放到最后惶熘腥?/P第二方案:40、45、50、55、(最后一天放到第一天) 这样第二方案一定是40、45、50、55、60、65、70,共385页。13、7个小队共种树100棵,各小队种的查数都不相同,其中种树最多的小队种了18棵,种树最少的小队最少种了多少棵?解答:由已知得,其它6个小队共种了100-18=82棵, 为了使钌俚男又值氖髟缴僭胶茫?敲戳?个应该越多越好,有: 17+16+15+14+13=75棵, 所以最少的小队最少要种82-75=7棵。14、将14个互不相同的自然数,从小到大依次排成一列,已知它们的总和是170,如果去掉最大数和最小数,那么剩下的总和是150,在原来排成的次序中,第二个数是多少?解答:最大与最小数的和为170150=20,所以最大数最大为201=19, 当最大为19时,有191817161514131211109871=170, 当最大为18时,有18171615141312111098762=158, 所以最大数为19时,有第2个数为7。思维训练导引三年级第11讲 计算问题第02讲 乘法与除法1.算式33362512525516842的结果中末尾有多少个零?解答:找出算式中含有5的是:625125255=(5555)(555)(55)5,共10个5; 找出算式中含有2的是:16842=(2222)(222)(22)2,共10个2。每一组52=10,产生1个0,所以共有10个0。答:结果中末尾有10个零。2.如果n=2357111317125。那么n的各位数字的和是多少?解答:2357111317125=(71113) (317) (25125)=1001511250=1001(501250+11250) =1001(125002+1250) =1001(62500+1250) =(1000+1)63750 =63750000+63750 =63813750 6+3+8+1+3+7+5+0=33 答:n的各位数字的和是33.3.(1)计算:5(711)(1115)(1521), (2)计算:(11109321)(22242527).解答:(1)5(711)(1115)(1521)=511715112115=511111515217=5217=5377=53 =15 (2)(11109321)(22242527)=(11109321)22242527)=(11222) (10525) (96 27) (8324) 74=122174=428=1124.在算式(-7)16=2的各个方框内填入相同的数字后可使等式成立,求这个数字.解答:-7=11-7=(11-7)=4, 因为416=2,所以4=32,=8答:=8.5. 计算:917+9117-517+4517.解答:917+9117-517+4517=917-517+9117+4517=(9-5)17+(91+45)17=417+13617=68+8=766. 计算:567142+426811-852050.解答:567142+426811-852050=567142+3142811-85201002 .=142(567+3811)-8520002 =1423000-426000 =426000-426000 =07. 计算:285+2435+2120+1440+862.解答:285+2435+2120+1440+862=2275+2457+3745+27524+862=2275(1+2+3+4)+496=101410+496=1400+496=1896 8. 计算:5566+6677+7788+8899.解答:5566+6677+7788+8899=(115)(116)+(116)(117)+(117)(118)+(118)(119)=1111(56+67+78+89)=11(10+1)(30+42+56+72)=(110+11)200=121200=242009. 计算:(123456+234561+345612+456123+561234+612345) 7.解答:(123456+234561+345612+456123+561234+612345) 7=(1100000+210000+31000+4100+510+6)+(2100000+310000+41000+5100+610+1)+(3100000+410000+51000+6100+110+2)+(4100000+510000+61000+1100+210+3)+(5100000+610000+11000+2100+310+4)+(6100000+110000+21000+3100+410+5) 7=1+2+3+4+5+6100000+(2+3+4+5+6+1)10000+(3+4+5+6+1+2)1000+(4+5+6+1+2+3)100+(5+6+1+2+3+4)10+(6+1+2+3+4+5)1 7=(21100000+2110000+211000+21100+2110+211)7=211000007+21100007+2110007+211007+21107+2117=300000+30000+3000+300+30+3=33333310. (87+56+73+75+83+63+57+53+67+78+65+77+84+62) 14.解答:(87+56+73+75+83+63+57+53+67+78+65+77+84+62) 14=(8+5+7+7+8+6+5+5+6+7+6+7+8+6)10+(7+6+3+5+3+3+7+3+7+8+5+7+4+2)14=(147-7)10+(147-28) 14=(137)10+(107)14=(130+10)714=140714=107=7011.在算是12345679=888888888,12345679=555555555的方框和圆圈内分别填入恰当的数后可使两个等式都成立,求所填的两个数之和.解答:9个位是8,9个位是5,所以的个位是2,的个位是5。1200000082888888888,1300000062555555555, 1300000035555555555,所以=4572+45=117答:所填的两个数之和是117.12.计算:(1)4245,(2)3139,(3)4545,(4)132138.解答:(1)4245=42(50-5)=2100-210=1890 (2)3139=31(40-1)=1240-31=1209 (3)4545=45(50-5)=2250-225=2025 (4)132138=(100+30+2)138=13800+4140+276=1821613.计算:(1)1357911,(2)124111,(3)11111111.解答:(1)1357911=13579(10+1)=135790+13579=149369 (2)124111=124(100+10+1)=12400+1240+124=13764(3)11111111=1111(1000+100+10+1)=1111000+111100+11110+1111=123432114.(1)给出首位是1的两位数的简便算法,据此计算10至19中任意两数的乘积,并排列成一个乘法表. (2)有一类小于200的自然数,每一个数的各位数字之和是奇数,而且都是两个两位数的乘积,例如144=1212.那么在此类自然数中,第三大的数是多少?解答:(1)11=(10+) (1)=101+1=100+10+10+=100+(+) 10+首位是1的两位数的乘积=100+两个数个位数字之和的10倍+两个数个位数字之积首位是1的两位数乘法表10 10011 110 12112 120 132 14413 130 143 156 16914 140 154 168 182 19615 150 165 180 195 210 22516 160 176 192 208 224 240 25617 170 187 204 221 238 255 272 28918 180 198 216 234 252 270 288 306 32419 190 209 228 247 266 285 304 323 342 361 10 11 12 13 14 15 16 17 18 19(2)最大的是195=1315,其次是182=1314,再次是180=1215在此类自然数中,第三大的数是180.15.有16张纸,每张纸的正面用红色笔任意写1,2,3,4中的某个数字,在反面用蓝笔也写1,2,3,4中的某个数字,要求红色数相同的任何两张纸上,所写的蓝色数一定不同.现在把每张纸上的红、蓝两个数相乘,求这16个乘积的和.解答:红1可对应?,2,3,4;红2可对应蓝1,2,3,4;红3可对应蓝1,2,3,4;红4可对应蓝1,2,3,4,共有16种不同的情况。因为红色数相同的任何两张纸上,所写的蓝色数一定不同,所以这16张纸正好就是这16种情况。(11+12+13+14)+(21+22+23+24)+(31+32+33+34)+(41+42+43+44)=(1+2+3+4)(1+2+3+4)=1010=100答:这16个乘积的和是100.1. 如图9-10,有8张卡片,上面分别写着自然数1至8。从中取出3张,要使这3张卡片上的数字之和为9。问有多少种不同的取法?解答:三数之和是9,不考虑顺序。1+2+6=9,1+3+5=9,2+3+4=9答:有3种不同的取法。!-empirenews.page-2. 从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法?解答:两数之和大于10,不考虑顺序。8+7,8+6,8+5,8+4,8+37+6,7+5,7+46+5!-empirenews.page- 答:共有9种不同的取法。3. 现在1分、2分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?解答:2角3分=23分54+21+11=23,54+13=23,53+24=23,53+23+12=23,53+22+14=23答:一共有5种不同的支付方法。4. 妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?解答:!-empirenews.page-需要考虑吃的顺序不同。7,5+2,4+3,3+4,3+2+2,2+5,2+3+2,2+2+3答:有8种不同的吃法。5.有3个工厂共订300份吉林日报,每个工厂最少订99份,最多101份。问一共有多少种不同的订法?解答:3个工厂各不相同,3数之和是300份,要考虑顺序。99+100+101,99+101+100,100+99+101,100+100+100,100+101+99,101+99+100,101+100+99答:一共有7种不同的订法。!-empirenews.page-6. 在所有的四位数中,各个数位上的数字之和等于34的数有多少个?解答:4个数字之和是34,只有9+9+9+7=34,9+9+8+8=34,不同的数字放在不同位是组成的四位数不同,考虑顺序。9997,9979,9799,7999;9988,9898,9889,8998,8989,8899答:有10个。7. 有25本书,分成6份。如果每份至少一本,且每份的本数都不相同,有多少种分法?解答:1+2+3+4+5+10,1+2+3+4+6+9,1+2+3+4+7+8,1+2+3+5+6+8,1+2+4+5+6+7!-empirenews.page-答:有5种分法。8. 小明用70元钱买了甲、乙、丙、丁4种书,共10册。已知甲、乙、丙、丁这4种书每本价格分别为3元、5元、7元、11元,而且每种书至少买了一本。那么,共有多少种不同的购买方法?解答:4种书每种1本,共3+5+7+11=26(元),70-26=44,44元买6本书113+51+32,112+72+51+31,112+71+53,111+74+51答:共有4种不同的购买方法。9. 甲、乙、丙、丁4名同学排成一行。从左到右数,如果甲不排在第一个位置上,乙不排在第二个位置上,丙不排在第三个位置上,丁不排在第四个位置上,那么不同的排法共有多少种?!-empirenews.page-解答:不同的排法共有9种。10. abcd代表一个四位数,其中a,b,c,d均为1,2,3,4中的某个数字,但彼此不同,例如2134。请写出所有满足关系ab,bc,cd的四位数abcd来。 !-empirenews.page-解答:若a最小:1324,1423;若c最小:2314,2413,3412答:有5个:1324,1423,2314,2413,3412。11. 一个两位数乘以5,所得的积的结果是一个三位数,且这个三位数的个位与百位数字的和恰好等于十位上的数字。问一共有多少个这样的数?解答:设两位数是AB,三位数是CDE,则AB*5CDE。CDE能被5整除,个位为0或5。若E=0,由于E+CD,所以CD;又因为CDE/5的商为两位数,所以百位小于5。当C=1,2,3,4时,D=1,2,3,4,CDE110,220,330,440。若E=5,当C=1,2,3,4时,D=6,7,8,9,CDE165,275,385,495。!-empirenews.page-答:一共有8个这样的数。12. 3件运动衣上的号码分别是1,2,3,甲、乙、丙3人各穿一件。现在25个小球,首先发给甲1个球,乙2个球,丙3个球。规定3人从余下的球中各取球一次,其中穿1号衣的人取他手中球数的1倍,穿2号衣的人取他手中球数的3倍,穿3号衣的人取他手中球数的4倍,取走之后还剩下两个球。那么,甲穿的运动衣的号码是多少?解答:3人自己取走的球数是25-(1+2+3)19-2=17(个),17=3*4+2*1+1*3,所以,穿2号球衣的人取走手中球数1的3倍,这是甲。!-empirenews.page-答:甲穿的运动衣的号码是2。 13. 甲、乙两人打乒乓球,谁先胜两局谁赢;如果没有人连胜两局,则谁先胜三局谁赢,打到决出输赢为止。那么一共有多少种可能的情况?解答:设甲胜为A,甲负为B,若最终甲赢,有7种可能的情况。如图。同理,乙赢也有7种可能的情况。7+714答:一共有14种可能的情况。!-empirenews.page-14. 用7张长2分米、宽1分米的长方形不干胶,贴在一张长7分米、宽2分米的木板,将其盖住,共有多少种不同的拼贴方式?在这里,如果两种方案可以通过旋转而互相得到,那么就认为是同一种。解答:12种。如图所示。!-empirenews.page-15. 用对角线把正八边形剖分成三角形,要求这些三角形的顶点是正八边形的顶点,那么共有多少种不同的方法?在这里,如果两种剖分方法可以通过恰当的旋转、反射,或者旋转加反射而互相得到,那么就认为是同一种。 !-empirenews.page-解答:12种。如图所示。1、把1至9这9个不同的数字分别填在图7-1的各个方格内,可使加法和乘法两个算式都成立。现有3个数字的位置已确定,请你填上其他数字。解答:由两位数乘一位数得两位数可以推出应为17*4=68,那么,后面的加数个位为5,余下2、9正好满足68+25=93。2、图7-2是一个乘法算式。当乘积最大时,方框内所填的4个数字之和是多少?解答:一个两位数乘5得两位数,那么个位只能是1;要使乘积最大,个位当然应该是9;即算式为19*5=95;那么,所填的四个数字之和为:1+9+9+5=24。3、请补全图-3所示的残缺算式,问其中的被乘数是多少?解答:由个位往前分析,容易得到被乘数个位为8,积十位为7,被乘数百位为5,万位为4,积万位为3;即整个算式为:47568*7=332976。所以,被乘数为47568。4、图7-4是一个残缺的乘法竖式,那么乘积是多少? 解答:由乘积的最高位不难看出积应该是10?2,且在它上面的乘积应该是9?;因为加2后有进位,所以,个位只有8、9两种可能;又第一个乘积的十位为2,个位也是2,说明被乘数为22,乘数个位为1;或者被乘数为11,乘数个位为2;如果被乘数为22,乘数个位为1,乘数的个位只能是4,显然不行;那么,被乘数为11,乘数个位为2,这样,乘数个位就为9,即整个算式为11*92=1012。所以,乘积是1012。5、图7-5是一个残缺的乘法算式,只知道其中一个位置上数字为8,那么这个算式的乘积是多少?解答:由被乘数乘8后得两位数容易得出被乘数应该为12,乘数个位则必定为9,那么结果为12*89=1068。6、图7-6是一个残缺的乘法算式,补全后它的乘积是多少?解答:由乘积个位得5,那么被乘数的个位也必定是5;由乘数的十位乘被乘数时十位为0,可知乘数的十位是4或8;由积的千位为5,推得被乘数百位为3,并由此推出乘数十位为4;所以,算式为325*47=15275,即乘积是15275。7、在图7-7所示的算式中只知道3个位置上的数字是4,那么补全后它的乘积是多少?解答:8、图7-8是一个残缺的乘法算式,补全后这个算式的乘积应是多少?解答:9、图7-9是一个残缺的乘法算式,补全后这个算式的乘积应是多少?解答:由中间的5入手,因为被乘数十位为1,所以5前面百位上肯定是1,这样可推得19*8=152;再由得数百位为8,推出其上面的方框中应为7,进而得出是19*9=171;所以,最后的乘积应为19*98=1862。10、图7-10中的竖式由1,2,3,4,5,6,7,8中的7个数码组成,请将空缺的数码填上,使得竖式成立。解答:乘数不可能是1,则被乘数百位必定是1;两数相乘,个位得2的有:3*4=12、4*8=32、6*7=42;分别试算,得到:158*4=632。11、在图7-11所示除法竖式的每个方框中,填入适当的数字,使算式成立。那么算式中的被除数是多少?解答:分析273,除数个位和商的十位有两种可能:1*3=3或7*9=63,如果是后一种,那么只有39*7=273,但39*2=7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年PS铝合金板项目发展计划
- 2025年加工羽毛(绒)合作协议书
- 2025年入团培训考试题目及答案
- 2025年莘县社工招聘考试真题及答案
- 2025年大学团员考试题型及答案
- 事业管理人员考试及答案
- 恩启奶粉培训知识课件
- 恐怖完整的课件
- 急诊科护理工作总结
- 运动塑形考试题及答案
- 人教版小学数学五年级上册完美版全册PPT教学课件
- 《无人机组装与调试》-教学教案
- 环境卫生学与消毒灭菌效果监测
- 我的叔叔于勒省一等奖课件市公开课一等奖课件省赛课获奖课件
- 跨境电商物流与供应链管理PPT全套完整教学课件
- 初三化学家长会发言稿
- C语言试讲稿课件
- 收音机组装指导书
- 北京市房屋租赁合同(BF20230603)(2023版)
- 全国行政区域身份证代码表(EXCEL版)
- 新麻醉记录单
评论
0/150
提交评论