



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
运用气体定律解决变质量问题的几种方法解变质量问题是气体定律教学中的一个难点,气体定律的适用条件是气体质量不变,所以在解决这一类问题中就要设法将变质量转化为定质量处理。常用的解题方法如下。一、 等效的方法在充气、抽气的问题中可以假设把充进或抽出的气体包含在气体变化的始末状态中,即用等效法把变质量问题转化为恒定质量的问题。1.充气中的变质量问题设想将充进容器内的气体用一根无形的弹性口袋收集起来,那么当我们取容器和口袋内的全部气体为研究对象时,这些气体状态不管怎样变化,其质量总是不变的这样,我们就将变质量的问题转化成质量一定的问题了例1一个篮球的容积是,用打气筒给篮球打气时,每次把Pa的空气打进去。如果在打气前篮球里的空气压强也是Pa,那么打30次以后篮球内的空气压强是多少Pa?(设在打气过程中气体温度不变)解析: 由于每打一次气,总是把体积,相等质量、压强为的空气压到容积为的容器中,所以打次气后,共打入压强为的气体的总体积为,因为打入的体积的气体与原先容器里空气的状态相同,故以这两部分气体的整体为研究对象取打气前为初状态:压强为、体积为;打气后容器中气体的状态为末状态:压强为、体积为 令为篮球的体积,为次所充气体的体积及篮球的体积之和则由于整个过程中气体质量不变、温度不变,可用玻意耳定律求解。 2.抽气中的变质量问题用打气筒对容器抽气的的过程中,对每一次抽气而言,气体质量发生变化,其解决方法同充气问题类似:假设把每次抽出的气体包含在气体变化的始末状态中,即用等效法把变质量问题转化为恒定质量的问题。图1例2.用容积为的活塞式抽气机对容积为的容器中的气体抽气,如图1所示。设容器中原来气体压强为,抽气过程中气体温度不变求抽气机的活塞抽动次后,容器中剩余气体的压强为多大?解析:如图是活塞抽气机示意图,当活塞下压,阀门a关闭,b打开,抽气机气缸中V体积的气体排出活塞第二次上提(即抽第二次气),容器中气体压强降为P2根据玻意耳定律得第一次抽气第二次抽气以此类推,第次抽气容器中气体压强降为二、应用密度方程一定质量的气体,若体积发生变化,气体的密度也随之变化,由于气体密度 ,故将气体体积代入状态方程并化简得:,这就是气体状态发生变化时的密度关系方程此方程是由质量不变的条件推导出来的,但也适用于同一种气体的变质量问题;当温度不变或压强不变时,由上式可以得到:和,这便是玻意耳定律的密度方程和盖吕萨克定律的密度方程例3.开口的玻璃瓶内装有空气,当温度自升高到时,瓶内恰好失去质量为的空气,求瓶内原有空气质量多少克?解析:瓶子开口,瓶内外压强相等,大气压认为是不变的,所以瓶内的空气变化可认为是等压变化设瓶内空气在时密度为,在时密度为,瓶内原来空气质量为,加热后失去空气质量为,由于对同一气体来说,故有 根据盖吕萨克定律密度方程: 由式,可得:三、巧选研究对象两个相连的容器中的气体都发生了变化,对于每一个容器而言则属于变质量问题,但是如果能巧妙的选取研究对象,就可以把这类变质量问题转化为定质量问题处理。例4. 如图2所示,、两容器容积相同,用细长直导管相连,二者均封入压强为,温度为的一定质量的理想气体,现使内气体温度升温至,稳定后容器的压强为多少?图2解析:因为升温前后,、容器内的气体都发生了变化,是变质量问题,我们可以把变质量问题转化为定质量问题。我们把升温前整个气体分为和两部分(如图3所示),以便升温后,让气体充满A容器,气体压缩进容器,于是由气态方程或气体实验定律有:图3 联立上面连个方程解得:四、虚拟中间过程通过研究对象的选取和物理过程的虚拟,把变质量问题转化为定质量问题。图4例5.如图4所示的容器与由毛细管连接,,开始时,、都充有温度为,压强为的空气。现使的温度保持不变,对加热,使内气体压强变为,毛细管不传热,且体积不计,求中的气体的温度。解析:对中气体加热时,中气体体积、压强、温度都要发生变化,将有一部分气体从中进入中,进入中的气体温度又变为,虽然中气体温度不变,但由于质量发生变化,压强也随着变化(增大),这样、两容器中的气体质量都发生了变化,似乎无法用气态方程或实验定律来解,那么能否通过巧妙的选取研究对象及一些中间参量,把变质量问题转化为定质量问题处理呢?加热后平衡时两部分气体压强相等,均为,因此,可先以、中的气体作为研究对象(一定质量),假设保持温度不变,压强由增至,体积由()变为V;再以此状态时体积为()的气体为研究对象,压强保
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国草本植物行业发展趋势分析与未来投资战略咨询研究报告
- 社区筛查工作总结
- 弱电负责人年度工作总结
- 离婚协议签订注意事项及子女抚养权及监护权协议
- 高净值人士离婚财产分割与子女抚养费约定合同样板
- 离婚协议中夫妻共同债务分割及追偿范本
- 社区社区活动场地租赁及社区文创产品推广合同
- 护理人员服装礼仪标准
- 离婚子女抚养费用调整及子女生活费用调整补充协议
- 2025至2030中国冻干粉针剂行业运营态势与投资前景调查研究报告
- 2025版防洪堤坝加固工程施工合同
- 2025年消防经济学试题及答案
- 2025-2026学年人教版(2024)小学美术三年级上册教学计划及进度表
- 智能培训系统构建
- 2025年秋期新教材人音版三年级上册小学音乐教学计划+进度表
- 2025广东广州越秀区矿泉街招聘禁毒专职人员1人考试备考题库及答案解析
- 14.守望生命 课件 九年级上册《心理健康教育》(鲁教版)
- 2025年医院安全员安全技能测试
- 网络安全技术培训
- 医学检验项目培训
- 2025年兽医实验室理论考试题库及答案详解【夺冠系列】
评论
0/150
提交评论