数学必修北师大版模拟方法几何概型概率的应用课件.ppt_第1页
数学必修北师大版模拟方法几何概型概率的应用课件.ppt_第2页
数学必修北师大版模拟方法几何概型概率的应用课件.ppt_第3页
数学必修北师大版模拟方法几何概型概率的应用课件.ppt_第4页
数学必修北师大版模拟方法几何概型概率的应用课件.ppt_第5页
免费预览已结束,剩余49页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 第三节模拟方法 几何概型 概率的应用 2 三年6考高考指数 1 了解随机数的意义 能运用模拟方法估计概率 2 了解几何概型的意义 3 1 对几何概型的考查是高考的重点 2 题型以选择题和填空题为主 经常与线性规划 不等式的解集 方程的根所在的区间等问题相结合 4 模拟方法与几何概型 1 模拟方法对于某些无法确切知道概率的问题 常借助 来估计某些随机事件发生的概率 用 可以在短时间内完成大量的重复试验 模拟方法 模拟方法 5 2 几何概型 向平面上有限区域 集合 G内随机地投掷点M 若点M落在 的概率与G1的 成正比 而与G的 无关 即P 点M落在G1 则称这种模型为几何概型 几何概型中的G也可以是 或 的有限区域 相应的概率是 或 子区域G1 G 面积 形状 位置 空间中 直线上 体积之比 长度之比 6 即时应用 1 思考 古典概型与几何概型有何区别 提示 古典概型与几何概型中基本事件发生的可能性都是相等的 但古典概型的基本事件有有限个 几何概型的基本事件有无限个 7 2 判断下列概率模型 是否是几何概型 请在括号中填写 是 或 否 在区间 10 10 内任取一个数 求取到1的概率 在区间 10 10 内任取一个数 求取到绝对值不大于1的数的概率 在区间 10 10 内任取一个整数 求取到大于1而小于2的数的概率 向一个边长为4cm的正方形ABCD内投一点P 求点P离中心不超过1cm的概率 8 解析 中概率模型不是几何概型 虽然区间 10 10 内有无限多个数 但取到 1 只是一个数字 不能构成区域长度 中概率模型是几何概型 因为区间 10 10 和 1 1 上有无限多个数可取 满足无限性 且在这两个区间内每个数被取到的机会是相等的 满足等可能性 9 中概率模型不是几何概型 因为在区间 10 10 内的整数只有21个 是有限的 不满足无限性特征 中概率模型是几何概型 因为在边长为4cm的正方形和半径为1cm的圆内均有无数多个点 且这两个区域内的任何一个点都有可能被投到 故满足无限性和等可能性 答案 否 是 否 是 10 3 在平面直角坐标系xOy中 设F是横坐标与纵坐标的绝对值均不大于2的点构成的区域 E是到原点的距离不大于1的点构成的区域 向F中随机投一点 则所投的点落在E中的概率是 11 解析 如图 区域F表示边长为4的正方形ABCD的内部 含边界 区域E表示单位圆及其内部 因此P 答案 12 4 在集合A m 关于x的方程无实根 中随机地取一元素m 恰使式子lgm有意义的概率为 解析 由于得 10 在数轴上表示为 故所求概率为答案 13 与长度 角度 有关的几何概型 方法点睛 1 与长度有关的几何概型如果试验的结果构成的区域的几何度量可用长度表示 则其概率的计算公式为P A 14 2 与角度有关的几何概型当涉及射线的转动 扇形中有关落点区域问题时 应以角的大小作为区域度量来计算概率 不可用线段代替 这是两种不同的度量手段 提醒 有时与长度或角度有关的几何概型 题干并不直接给出 而是将条件隐藏 与其他知识综合考查 15 例1 1 在半径为1的圆内的一条直径上任取一点 过这个点作垂直于直径的弦 则弦长超过圆内接等边三角形边长的概率为 2 在等腰Rt ABC中 过直角顶点C在 ACB内作一条射线CD与线段AB交于点D 则AD AC的概率为 16 解题指南 1 问题可转化为 直径上到圆心O的距离小于的点构成的线段长与直径长之比 2 要使AD AC 可先找到AD AC时 ACD的度数 再求出相应区域的角 利用几何概型的概率公式求解即可 17 规范解答 1 记事件A为 弦长超过圆内接等边三角形的边长 如图 不妨在过等边三角形BCD的顶点B的直径BE上任取一点F作垂直于直径的弦 当弦为CD时 就是等边三角形的边长 弦长大于CD的充要条件是圆心O到弦的距离小于OF 此时F为OE的中点 由几何概型概率公式得 P A 答案 18 2 射线CD在 ACB内是均匀分布的 故 ACB 90 可看成试验的所有结果构成的区域 在线段AB上取一点E 使AE AC 则 ACE 可看成事件构成的区域 所以满足条件的概率为答案 19 互动探究 1 若将本例 1 中条件改为 从圆周上任取两点 连接两点成一条弦 其他条件不变 求弦长超过此圆内接正三角形边长的概率 2 若将本例 2 中条件改为 在斜边AB上任取一点D 其他条件不变 求AD AC的概率 20 解析 1 记事件A为 弦长超过圆内接正三角形边长 如图 取圆内接正三角形的顶点B作为弦的一个端点 当另一个端点E在劣弧上时 BE BC 而劣弧的长恰为圆周长的由几何概型概率公式有P A 21 2 在AB上截取AE AC 且记事件M AD的长小于AC的长 则P M sin45 所以AD的长小于AC的长的概率是 22 反思 感悟 将每个基本事件理解为从某个特定的几何区域内随机地取一点 该区域中每一点被取到的机会都一样 而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点 这样的概率模型就可以用几何概型来求解 23 变式备选 1 在长为12cm的线段AB上任取一点M 并以线段AM为一边作正方形 则此正方形的面积介于36cm2到81cm2之间的概率为 解析 选C 正方形的面积介于36cm2到81cm2之间 所以正方形的边长介于6cm到9cm之间 线段AB的长度为12cm 则所求概率为 24 2 2012 南昌模拟 已知地铁列车每10min一班 在车站停1min 则乘客到达站台立即乘上车的概率是 解析 选A 在10min内只有1min乘客到达站台后立即上车 所求概率为 25 与面积 体积 有关的几何概型 方法点睛 1 与面积有关的几何概型问题如果试验的结果所构成的区域的几何度量可用面积表示 则其概率的计算公式为 P A 26 2 与体积有关的几何概型问题如果试验的结果所构成的区域的几何度量可用体积表示 则其概率的计算公式为 P A 27 例2 1 设有一个等边三角形网格 其中各个最小等边三角形的边长都是cm 现用直径为2cm的硬币投掷到此网格上 则硬币落下后与格线没有公共点的概率为 2 正方体ABCD A1B1C1D1的棱长为1 在正方体内随机取点M 则使四棱锥M ABCD的体积小于的概率为 28 解题指南 1 硬币落下后与格线没有公共点即表示硬币中心到三角形各边 格线 的距离都大于1 在等边三角形内作三条与等边三角形三边距离均为1的直线构成小等边三角形 当硬币的中心在小三角形内时 硬币与三边都无交点 所以硬币与格线没有公共点就转化为硬币中心落在小等边三角形内的问题 2 先根据四棱锥M ABCD体积等于时M的位置 再找出体积小于时M的位置 29 规范解答 1 记E 硬币落下后与格线没有公共点 如图所示 小三角形的边长为 P E 答案 30 2 如图所示 正方体ABCD A1B1C1D1中 设四棱锥M ABCD的高为h 则又S四边形ABCD 1 若体积小于则即点M在正方体的下半部分 答案 31 互动探究 本例 2 中条件不变 1 求M落在三棱柱ABC A1B1C1内的概率 2 求M落在三棱锥B A1B1C1内的概率 32 解析 V正方体 1 1 V三棱柱 所求概率P1 2 V三棱锥 所求概率P2 33 反思 感悟 对于几何图形中的几何概型问题 寻求事件构成区域的关键是先找出符合题意的临界位置 如本例 1 中 在等边三角形内作三条与等边三角形三边距离均为1的直线构成小等边三角形 2 中先找出满足条件的临界值时M的位置 再寻求事件构成的区域 34 变式备选 2012 上饶模拟 已知0 a 3 0 b 2 设事件A为 关于x的方程x2 2ax b2 0有实根 则事件A发生的概率为 35 解析 选C 由题意知 该方程有实根满足条件如图 P A 36 生活中的几何概型问题 方法点睛 生活中的几何概型度量区域的构造 1 将实际问题转化为几何概型中的长度 角度 面积 体积等常见几何概型的求解问题 构造出随机事件A对应的几何图形 利用几何图形的度量来求随机事件的概率 37 2 根据实际问题的具体情况 合理设置参数 建立适当的坐标系 在此基础上将试验的每一个结果一一对应于该坐标系的点 便可构造出度量区域 提醒 当基本事件受两个连续变量控制时 一般是把两个连续变量分别作为一个点的横坐标和纵坐标 这样基本事件就构成了平面上的一个区域 即可借助平面区域解决 38 例3 2012 西安模拟 甲 乙两船驶向一个不能同时停泊两艘船的码头 它们在一昼夜内到达该码头的时刻是等可能的 如果甲船停泊时间为1h 乙船停泊时间为2h 求它们中的任意一艘都不需要等待码头空出的概率 解题指南 要使两船都不需要等待码头空出 当且仅当甲比乙早到达1h以上或乙比甲早到达2h以上 39 规范解答 这是一个几何概型问题 设甲 乙两艘船到达码头的时刻分别为x与y A为 两船都不需要等待码头空出 则0 x 24 0 y 24 要使两船都不需要等待码头空出 当且仅当甲比乙早到达1h以上或乙比甲早到达2h以上 即y x 1或x y 2 故所求事件构成集合A x y y x 1或x y 2 x 0 24 y 0 24 40 A为图中阴影部分 全部结果构成集合 为边长是24的正方形 所求概率为P A 41 反思 感悟 解答本题的关键是把两个时间分别用x y两个坐标表示 构成平面内的点 x y 从而把时间是一段长度问题转化为平面图形的二维面积问题 进而转化成面积型几何概型的问题 42 变式训练 甲 乙两人约定上午7 00至8 00之间到某站乘公共汽车 在这段时间内有3班公共汽车 它们开车时刻分别为7 20 7 40 8 00 如果他们约定 见车就乘 求甲 乙乘同一车的概率 43 解析 设甲到达汽车站的时刻为x 乙到达汽车站的时刻为y 44 则7 x 8 7 y 8 即甲 乙两人到达汽车站的时刻 x y 所对应的区域在平面直角坐标系中画出 如图所示 是大正方形 将三班车到站的时刻在图形中画出 则甲 乙两人要想乘同一班车 必须满足即 x y 必须落在图形中的三个带阴影的小正方形内 所以由几何概型的计算公式 得P 即甲 乙乘同一车的概率为 45 易错误区 对几何图形认识不清致误 典例 2011 江西高考 小波通过做游戏的方式来确定周末活动 他随机地往单位圆内投掷一点 若此点到圆心的距离大于则周末去看电影 若此点到圆心的距离小于则去打篮球 否则 在家看书 则小波周末不在家看书的概率为 46 解题指南 根据条件先求出小波周末去看电影的概率 再求出他去打篮球的概率 易得周末不在家看书的概率 规范解答 记 看电影 为事件A 打篮球 为事件B 不在家看书 为事件C 答案 47 阅卷人点拨 通过高考中的阅卷数据分析与总结 我们可以得到以下误区警示和备考建议 48 49 1 2011 福建高考 如图 矩形ABCD中 点E为边CD的中点 若在矩形ABCD内部随机取一个点Q 则点Q取自 ABE内部的概率等于 解析 选C 由题意 知 50 2 2011 湖南高考 已知圆C x2 y2 12 直线l 4x 3y 25

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论