stata操作介绍之相关性分析三.ppt_第1页
stata操作介绍之相关性分析三.ppt_第2页
stata操作介绍之相关性分析三.ppt_第3页
stata操作介绍之相关性分析三.ppt_第4页
stata操作介绍之相关性分析三.ppt_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三 线性回归分析 相关性分析回归分析多重共线性等相关检验和处理 线性回归分析的stata应用实例 本部分用到的实例是BigAndy sBurgerBarn的销售模型 BigAndy的汉堡销售收入取决于单价和广告支出水平 因此 这个模型包含两个解释变量和一个常数项 其中 sales为指定城市的月销售额并以千美仄元度量 price是以美元度量的单个汉堡的价格 advert为广告支出 同样以千美元度量 sales 1 2 price 3 advert 相关性分析 相关性分析主要目的是研究变量之间关系的密切程度 相关性分析的方法主要有 Pearson相关系数分析 KendallT相关系数分析 Spearman秩相关系数分析以及偏相关系数分析 1 Pearson相关系数分析 Pearson相关性分析是一个描述线性相关强度的量 取值于一1和1之间 Pearson相关性分析的命令格式 correlate varlist if in weight correlate options pwcorr varlist if in weight correlate options correlate尽可能使用两两变量中所有没有缺失的数据 pwcorr只采用没有任何缺失数据的完整观测值 correlate选项说明 pwcorr选项说明 用pwcorr命令实现所有变量的Pearson相关系数分析 并在显著性水平超过0 05的相关系数上打上星号 其命令为 pwcorr sigstar 0 05 2 KendallT相关系数分析 KendallT相关性分析是一个非参数度量变量间的相关性 其取值在一1和1之间 KendallT相关性分析的命令格式 ktau varlist if in weight ktau options 用ktau命令实现所有变量的KendallT相关系数分析 并在显著性水平超过0 05的相关系数上打上星号 其命令为 ktau star 0 05 3 Spearman秩相关系数分析 Spearman秩相关性分析也是一种不依赖于总体分布的非参数检验 取值也在一1和1之间 Spearman秩相关性分析的命令格式 spearman varlist if in weight spearman options 用spearman命令实现所有变量的Spearman秩相关系数分析 并在显著性水平超过0 05的相关系数上打上星号 其命令为 spearman star 0 05 4 偏相关系数分析 双变量相关分析是研究两个变量之间的相关关系 有时在分析两个变量之间相关关系时 往往会有其他变量的影响因素混合在里面 此时计算出来的相关系数可能并不能真正反映两个变量之间的关系 偏相关性分析的命令格式 pcorrvarnamelvarlist if in weight 用pcorr命令实现偏相关分析 其命令为 pcorr salespriceadvert 回归分析 回归分析时常用的Stata命令有 regress predict test命令 regress predict test是一组命令 它们完成各种简单和多元的普通最小二乘法回归 1 regress实现因变量对自变量的回归 regress命令的格式 regressdepvarindepvars if in weight options 因变量 自变量 实现因变量为销售收入 自变量为单价和广告支出的线性回归 其命令为 regresssalespriceadvert 表下方区域为基本的回归结果 第1列依次为被解释变量sales 解释变量price advert 截距项constant 第2列回归系数 第3列回归系数的标准误 第4列回归系数的t统计量值 第5列p值 第6列95 的置信区间 表左上方区域为方差分析表 第2列从上到下依次为回归平方和 SSE 残差平方和 SSR 和总离差平方和 SST 第3列为自由度 分别为k 2 n k 1 75 2 1 72 n 1 75 1 74 第4列为均方和 MSS 由各项平方和除以相应的自由度得到 表右上方区域给出了样本数 Numberofobs 判定系数 R squared 调整的判定系数 AdjR squared F统计量的值 回归方程标准误 RootMSE 以及其他一些统计量的信息 2 predict计算拟合值和残差 predict命令的格式 predict type newvar if in single options 指定存储类型的格式 变量名 指定需要拟合值还是残差值 若为resid 则是残差 计算前面所求回归方程的拟合值和残差 其命令分别为 predicty1predicte resid 3 test进行指定的检验 test命令主要用来检验系数是否符合一定的关系 test命令的格式如下 testvarlvar2 var3ktestvar Ctestvarl var2testvarl var2 var3 C 检验多个变量的系数是否同时为零 检验变量的系数是否为C 检验两个变量的系数是否相等 检验多个变量之间存在的一些关系 用test命令检验价格和广告支出的系数是否同时为0 其命令为 testpriceadvert P值 0 05 拒绝原假设 即价格和广告支出的系数不同时为0 相关检验和处理 回归分析时通常需要检验数据是否存在多重共线 序列相关和异方差等问题 如果存在这些问题 则需要对其进行处理 1 多重共线性的检验和处理 1 1stata中多重共线性检验的命令格式为 vif 该命令用来得到自变量的方差膨胀因子 一般来说 判断多重共线性的标准是 两个标准必须同时满足 最大的vif大于10 平均的vif大于1 由判断标准可知不存在多重共线性 1 2处理多重共线性的方法 1 如果只关心方程的预测能力 则在整个方程显著的条件下 可以不必关心具体的回归系数 2 增加样本容量 剔除导致多重共线性的变量或者修改模型设定形式 3 对于时间序列样本 通过使用差分模型可以一定程度上消除原模型中的多重共线性 4 岭回归方法 http bbs pinggu org thread 3035722 1 1 html 2 异方差的检验和处理 2 1stata中异方差检验的命令格式为 hettest或者imtest white 怀特检验 判断存在异方差的标准是 命令输出结果的P值小于0 05 则拒绝原假设 即存在异方差性 hettest和怀特检验输出结果的p值均大于0 05故不存在异方差性 2 2处理异方差性的方法 1 在regress命令的options选项中选择robust选项即可 2 加权最小二乘法 WLS 3 2stata中处理序列相关性的方法 1 Newey稳健性标准差neweyyx1x2x3 lag p 滞后阶数必选 2 使用OLS 聚类稳健的标准差 clusterrobuststandarderror 面板数据中经常使用聚类稳

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论