5-2导数在研究函数中的应用(答案).doc_第1页
5-2导数在研究函数中的应用(答案).doc_第2页
5-2导数在研究函数中的应用(答案).doc_第3页
5-2导数在研究函数中的应用(答案).doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

5-2导数在研究函数中的应用基础巩固训练1(广东省六校2009届高三第二次联考试卷)函数的定义域为开区间,导函数在内的图象如图所示,则函数在内有极小值 点共有( )A1个 B2个 C3个 D 4个 解析:观察图象可知,只有一处是先减后增的,选A2、函数有( )A. 极小值1,极大值1B. 极小值2,极大值3C.极小值2,极大值2D. 极小值1,极大值3解析:,令得 当时,;当时,;当,时,当,故选D.3函数y=f(x)=lnxx,在区间(0,e上的最大值为A.1eB.1C.eD.0解析:y=1,令y=0,即x=1,在(0,e上列表如下:x(0,1)1(1,e)ey+0y增函数极大值1减函数1e由于f(e)=1e,而11e,从而y最大=f(1)=1.答案:B4(广东深圳外国语学校20082009学年高三第二次月考)若,求函数的单调区间. 解析 (当a.1时,对x(0,+)恒有0, 当a.1时,f(x)在(0,+)上为增函数;5(汕头市金山中学2009届高三上学期11月月考)已知函数f(x)=ax3+3x2x+1,问是否存在实数a,使得f(x)在(0,4)上单调递减?若存在,求出a的范围;若不存在,说明理由。解:(x)=3ax2+6x1. 要使f(x)在0,4递减,则当x(0,4)时,(x)0。或,解得a3.综合拔高训练6(东莞高级中学2009届高三上学期11月教学监控测试)已知函数f(x)=ax3+bx23x在x=1处取得极值. ()求函数f(x)的解析式; ()求证:对于区间1,1上任意两个自变量的值x1,x2,都有|f(x1)f(x2)|4; ()若过点A(1,m)(m2)可作曲线y=f(x)的三条切线,求实数m的取值范围.解:(I)f(x)=3ax2+2bx3,依题意,f(1)=f(1)=0, 即解得a=1,b=0. f(x)=x33x. (II)f(x)=x33x,f(x)=3x23=3(x+1)(x1),当1x1时,f(x)0,故f(x)在区间1,1上为减函数,fmax(x)=f(1)=2,fmin(x)=f(1)=2对于区间1,1上任意两个自变量的值x1,x2,都有|f(x1)f(x2)|fmax(x) fmin(x)|f(x1)f(x2)|fmax(x)fmin(x)|=2(2)=4 (III)f(x)=3x23=3(x+1)(x1), 曲线方程为y=x33x,点A(1,m)不在曲线上.设切点为M(x0,y0),则点M的坐标满足因,故切线的斜率为,整理得.过点A(1,m)可作曲线的三条切线,关于x0方程=0有三个实根.设g(x0)= ,则g(x0)=6,由g(x0)=0,得x0=0或x0=1.g(x0)在(,0),(1,+)上单调递增,在(0,1)上单调递减.函数g(x0)= 的极值点为x0=0,x0=1关于x0方程=0有三个实根的充要条件是,解得3m2.故所求的实数a的取值范围是3m2.7(广东省北江中学2009届高三上学期12月月考 )已知,其中是自然常数,()讨论时, 的单调性、极值;()求证:在()的条件下,;()是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.解:(), 1分当时,此时单调递减当时,此时单调递增 3分的极小值为 4分()的极小值为1,即在上的最小值为1, , 5分令, 6分当时,在上单调递增 7分 在(1)的条件下, 9分()假设存在实数,使()有最小值3, 9分 当时,在上单调递减,(舍去),所以,此时无最小值. 10分当时,在上单调递减,在上单调递增,满足条件. 11分 当时,在上单调递减,(舍去),所以,此时无最小值.综上,存在实数,使得当时有最小值3. 8(潮南区0809学年度第一学期期末高三级质检)已知函数()(1) 求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论