多元线性回归模型:假设检验.ppt_第1页
多元线性回归模型:假设检验.ppt_第2页
多元线性回归模型:假设检验.ppt_第3页
多元线性回归模型:假设检验.ppt_第4页
多元线性回归模型:假设检验.ppt_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 MultipleRegressionAnalysis y b0 b1x1 b2x2 bkxk u2 Inference 2 AssumptionsoftheClassicalLinearModel CLM Sofar weknowthatgiventheGauss Markovassumptions OLSisBLUE Inordertodoclassicalhypothesistesting weneedtoaddanotherassumption beyondtheGauss Markovassumptions Assumethatuisindependentofx1 x2 xkanduisnormallydistributedwithzeromeanandvariances2 u Normal 0 s2 3 CLMAssumptions cont UnderCLM OLSisnotonlyBLUE butistheminimumvarianceunbiasedestimatorWecansummarizethepopulationassumptionsofCLMasfollowsy x Normal b0 b1x1 bkxk s2 Whilefornowwejustassumenormality clearthatsometimesnotthecaseLargesampleswillletusdropnormality 4 x1 x2 Thehomoskedasticnormaldistributionwithasingleexplanatoryvariable E y x b0 b1x y f y x Normaldistributions 5 NormalSamplingDistributions 6 ThetTest 7 ThetTest cont KnowingthesamplingdistributionforthestandardizedestimatorallowsustocarryouthypothesistestsStartwithanullhypothesisForexample H0 bj 0Ifacceptnull thenacceptthatxjhasnoeffectony controllingforotherx s 8 ThetTest cont 9 tTest One SidedAlternatives Besidesournull H0 weneedanalternativehypothesis H1 andasignificancelevelH1maybeone sided ortwo sidedH1 bj 0andH1 bj 0areone sidedH1 bj 0isatwo sidedalternativeIfwewanttohaveonlya5 probabilityofrejectingH0ifitisreallytrue thenwesayoursignificancelevelis5 10 One SidedAlternatives cont Havingpickedasignificancelevel a welookupthe 1 a thpercentileinatdistributionwithn k 1dfandcallthisc thecriticalvalueWecanrejectthenullhypothesisifthetstatisticisgreaterthanthecriticalvalueIfthetstatisticislessthanthecriticalvaluethenwefailtorejectthenull 11 yi b0 b1xi1 bkxik uiH0 bj 0H1 bj 0 c 0 a 1 a One SidedAlternatives cont Failtoreject reject 12 Examples1 HourlyWageEquationH0 bexper 0H1 bexper 0 13 One sidedvsTwo sided Becausethetdistributionissymmetric testingH1 bjthan cthenwefailtorejectthenullForatwo sidedtest wesetthecriticalvaluebasedona 2andrejectH1 bj 0iftheabsolutevalueofthetstatistic c 14 yi b0 b1Xi1 bkXik uiH0 bj 0H1 bj 0 c 0 a 2 1 a c a 2 Two SidedAlternatives reject reject failtoreject 15 SummaryforH0 bj 0 Unlessotherwisestated thealternativeisassumedtobetwo sidedIfwerejectthenull wetypicallysay xjisstatisticallysignificantatthea level Ifwefailtorejectthenull wetypicallysay xjisstatisticallyinsignificantatthea level 16 Examples2 DeterminantsofCollegeGPAcolGPA collegeGPA greatpointaverage hsGPA highschoolGPAskipped averagenumbersofleturesmissedperweek 17 Testingotherhypotheses AmoregeneralformofthetstatisticrecognizesthatwemaywanttotestsomethinglikeH0 bj ajInthiscase theappropriatetstatisticis 18 Examples3 CampusCrimeandEnrollmentH0 benroll 1H1 benroll 1 19 Examples4 HousingPricesandAirPollutionH0 blog nox 1H1 blog nox 1 20 ConfidenceIntervals Anotherwaytouseclassicalstatisticaltestingistoconstructaconfidenceintervalusingthesamecriticalvalueaswasusedforatwo sidedtestA 1 a confidenceintervalisdefinedas 21 Computingp valuesforttests Analternativetotheclassicalapproachistoask whatisthesmallestsignificancelevelatwhichthenullwouldberejected So computethetstatistic andthenlookupwhatpercentileitisintheappropriatetdistribution thisisthep valuep valueistheprobabilitywewouldobservethetstatisticwedid ifthenullweretrue 22 Mostcomputerpackageswillcomputethep valueforyou assumingatwo sidedtestIfyoureallywantaone sidedalternative justdividethetwo sidedp valueby2Manysoftware suchasStataorEviewsprovidesthetstatistic p value and95 confidenceintervalforH0 bj 0foryou 23 TestingaLinearCombination Supposeinsteadoftestingwhetherb1isequaltoaconstant youwanttotestifitisequaltoanotherparameter thatisH0 b1 b2Usesamebasicprocedureforformingatstatistic 24 TestingLinearCombo cont 25 TestingaLinearCombo cont So touseformula needs12 whichstandardoutputdoesnothaveManypackageswillhaveanoptiontogetit orwilljustperformthetestforyouMoregenerally youcanalwaysrestatetheproblemtogetthetestyouwant 26 Examples5 SupposeyouareinterestedintheeffectofcampaignexpendituresonoutcomesModelisvoteA b0 b1log expendA b2log expendB b3prtystrA uH0 b1 b2 orH0 q1 b1 b2 0b1 q1 b2 sosubstituteinandrearrange voteA b0 q1log expendA b2log expendB expendA b3prtystrA u 27 Example cont Thisisthesamemodelasoriginally butnowyougetastandarderrorforb1 b2 q1directlyfromthebasicregressionAnylinearcombinationofparameterscouldbetestedinasimilarmannerOtherexamplesofhypothesesaboutasinglelinearcombinationofparameters b1 1 b2 b1 5b2 b1 1 2b2 etc 28 MultipleLinearRestrictions Everythingwe vedonesofarhasinvolvedtestingasinglelinearrestriction e g b1 0orb1 b2 However wemaywanttojointlytestmultiplehypothesesaboutourparametersAtypicalexampleistesting exclusionrestrictions wewanttoknowifagroupofparametersareallequaltozero 29 TestingExclusionRestrictions NowthenullhypothesismightbesomethinglikeH0 bk q 1 0 bk 0ThealternativeisjustH1 H0isnottrueCan tjustcheckeachtstatisticseparately becausewewanttoknowiftheqparametersarejointlysignificantatagivenlevel itispossiblefornonetobeindividuallysignificantatthatlevel 30 ExclusionRestrictions cont Todothetestweneedtoestimatethe restrictedmodel withoutxk q 1 xkincluded aswellasthe unrestrictedmodel withallx sincludedIntuitively wewanttoknowifthechangeinSSRisbigenoughtowarrantinclusionofxk q 1 xk 31 TheFstatistic TheFstatisticisalwayspositive sincetheSSRfromtherestrictedmodelcan tbelessthantheSSRfromtheunrestrictedEssentiallytheFstatisticismeasuringtherelativeincreaseinSSRwhenmovingfromtheunrestrictedtorestrictedmodelq numberofrestrictions ordfr dfurn k 1 dfur 32 TheFstatistic cont TodecideiftheincreaseinSSRwhenwemovetoarestrictedmodelis bigenough torejecttheexclusions weneedtoknowaboutthesamplingdistributionofourFstatNotsurprisingly F Fq n k 1 whereqisreferredtoasthenumeratordegreesoffreedomandn k 1asthedenominatordegreesoffreedom 33 0 c a 1 a f F F TheFstatistic cont reject failtoreject RejectH0atasignificancelevelifF c 34 Example MajorLeagueBaseballPlayers Salary 35 RelationshipbetweenFandtStat TheFstatisticisintendedtodetectwhetheranycombinationofasetofcoefficientsisdifferentfromzero Thettestisbestsuitedfortestingasinglehypothesis Groupabunchofinsignificantvarialbeswithasignificantvariable itispossibleconcludethattheentiresetofvariablesisjointlyinsignificant Often whenavariableisverystatisticallysignificantanditistestedjointlywithanothersetofvariables thesetwillbejointlysignificant 36 TheR2formoftheFstatistic BecausetheSSR smaybelargeandunwieldy analternativeformoftheformulaisusefulWeusethefactthatSSR SST 1 R2 foranyregression socansubstituteinforSSRuandSSRur 37 OverallSignificance AspecialcaseofexclusionrestrictionsistotestH0 b1 b2 bk 0SincetheR2fromamodelwithonlyan

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论