




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档现代控制理论总结第一章:控制系统的状态空间表达式1、状态变量,状态空间与状态轨迹的概念: 在描述系统运动的所有变量中,必定可以找到数目最少的一组变量,他们足以描述系统的全部运动,这组变量就称为系统的状态变量。 以状态变量X1,,X2,X3,Xn为坐标轴所构成的n维欧式空间(实数域上的向量空间)称为状态空间。 随着时间的推移,x(t)在状态空间中描绘出一条轨迹,称为状态轨迹。2、状态空间表达式: 状态方程和输出方程合起来构成对一个系统完整的动态描述,称为系统的状态空间表达式。3、实现问题: 由描述系统输入输出关系的运动方程或传递函数建立系统的状态空间表达式,这样的问题称为实现问题 单入单出系统传函:W(s)=,实现存在的条件是系统必须满足mt0内,使得根据t0,tf期间的输出y(t)能唯一的确定系统在初始时刻的状态x(t0),则称状态x(t0)是能观测的,若系统的每一个状态都是能观测的则称此系统是状态完全能观测的。2、能控性能观性的判别: 1)能控性:常用的有格拉姆矩阵判据,秩判据,约旦标准型判据,pbh判据 约旦判据:若线性定常系统的系统矩阵A为对角标准型,则系统状态完全能控的充要条件是输入矩阵B没有任何一行元素全部为零。若线性定常系统的系统矩阵A为约当标准型,则系统状态完全能控的充要条件是输入矩阵B中对应于每个约当块最后一行的元素不全为零输入矩阵B中对应于互异特征根的各行元素不全为零一般系统的能控性判据: 若系统矩阵A的特征值互异,A可变化为对角标准型,此时系统完全能控的充要条件是的各行元素没有全为零的行。 若系统矩阵A的特征值有重根,A可变化为约旦标准型,此时系统完全能控的充要条件是输入矩阵中对应于每个约当块最后一行的元素不全为零输入矩阵中对应于互异特征根的各行元素中,没有一行元素全部为零 秩判据: 线性定常系统的状态方程为x=Ax+bu其状态完全能控的充要条件是由A,b构成的能控性矩阵M=b Ab A2b . An-1b满秩,即rankM=n,否则当rankMn时系统为不完全能控。 2)能观性:判别方法通过线性变化把状态空间表达式化为约旦标准型,再根据标准型下的C阵的特点判别其能观性直接根据A,C阵进行判别 约旦标准型判据: 若线性定常系统的系统矩阵A为对角标准型,则系统完全能观的充要条件是输出矩阵C中没有任何一列元素全部为零; 若线性定常系统的系统矩阵A为约旦标准型,则系统完全能观的充要条件是输出矩阵C中对应于每个约旦块第一列的一列元素不全为零输出矩阵C中对应于互异特征值的各列元素中,没有一列元素全部为零。 秩判据:由A,C构成的能观性矩阵 满秩,即rankN=n。3、对偶关系: 4、对偶特性: 5、对偶原理: 6、能控能观转换及线性系统的结构分解: 见书上吧.不好打第四章:系统运动稳定性与李雅普诺夫方法1、第一法与第二法的基本思想及判断稳定性步骤: 第一法:又称为间接法,它通过求解系统状态方程,根据解的性质来判定系统的稳定性; 基本思想:对非线性系统在平衡状态进行小偏差线性化处理,之后领用线性系统特征值判定系统稳定性。 线性定常系统平衡状态=0渐进稳定的充要条件是系统矩阵A的所有特征根均具有负实部。 如果系统对于有界输入u引起的输出y是有界的,则称系统是输出稳定(BI-BO稳定),其稳定的充要条件是其传递函数W(s)=c的极点全部位于S平面的左半面。 线性定常系统状态稳定与输出稳定的关系: 态稳定一定是输出稳定,但输出稳定不一定是状态稳定 状态稳定与输出稳定等价的条件是系统的传函W(s)不出现零极点对消,即系统状态完全能控且能观。第一法的局限性: 为局部稳定,不是全剧稳定f(x)必须是连续光滑的第二法:又称直接法,是通过一个叫做李雅普诺夫函数的标量函数来直接判定系统的稳定性。 基本思想:基于能量思想,定义一个正定的标量函数V(x)作为虚构的广义能量函数,然后根据正定的标量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店消防合同范本
- 企业订制货箱合同范本
- 卫生小区出租合同范本
- 社区应急知识培训课件报到
- 房屋抵押私人合同范本
- 种植承包土地合同范本
- 租房西安转租合同范本
- 助残居家服务合同范本
- 外包监控安装合同范本
- 德阳安保保洁合同范本
- 手术标本固定
- 密态深度学习-记录
- 医院医学院医疗机构培训《烧伤病人护理教学查房》课件
- 家政服务协议书范本
- 中小学生研学旅行投标方案(技术方案)
- 成人手术后疼痛评估与护理-中华护理学会团体标准2023 2
- NB-T 10435-2020 电动汽车快速更换电池箱锁止机构通.用技术要求
- 学历认证授权委托书样本
- 中医医疗技术手册2013普及版汇编
- (高清版)JTGT 3360-01-2018 公路桥梁抗风设计规范
- gcp机构办公室工作计划
评论
0/150
提交评论