




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档 “对数平均数不等式”应用举隅江苏省姜堰中学 张圣官(225500)已知为两不等的正实数,我们称为的“对数平均数”它与的“几何平均数”及“算术平均数”之间有如下不等关系:证明:不妨设先证,即证, 令,设, 则,所以在递减,而,因此当时,恒成立,即成立 再证,即证, 令, 则,所以在递增,而,因此当时,恒成立,即成立 该不等式本身的证明乃通过构造函数,借助于导数作为工具,利用函数单调性而得在处理某些与指数、对数相关的不等式问题时,可以尝试应用它来帮助思考分析 例1 已知函数(1)当时,求过点的曲线的切线方程;(2)当存在两个不同零点时,求证: 分析:第(1)题易得切线方程为;第(2)题中我们先要探究:当存在两个不同零点时,需要具备什么条件,又能推得什么结论?转化为研究曲线和直线,当直线与曲线相切时,设切点为,则切线方程为,因此这样当存在两个不同零点时,必有进一步思考,要证明,可转化为证明,或等思路 方法一:即要证,令,由于,所以,为方程的两根由于,所以在递增,在递减 设,则,在递增, 从而,当时,即, 所以,因此,即原不等式成立 方法二:即要证,由于,因而, 令,则, 在递增,在递减 设,其在递减,所以, 所以,从而, 由此得,即 本题是近年来流传甚广的一道题,其条件结论非常优美以上两种方法散见于各种资料上,它们的特点均是通过构造辅助函数来帮助论证的总的来说,解题过程较为繁琐,而且要经过两次构造函数才行现在让我们换一种思路,将指数关系转化为对数关系,这样刚才的对数平均数不等式或许就能够帮得上忙以下解法令人拍案叫绝,真的是“大道至简”! 方法三:由于,因而,由对数平均数不等式知, 从而,即 例2(2010年天津高考理科21题)已知函数()求函数的单调区间和极值;()已知函数y=的图象与函数y=的图象关于直线对称,证明:当时,;()如果,且,证明: 分析:()、()略()由前知,是函数的极值点,不妨设,则根据,有,即 ,按照常规思路,一般设,则,然后通过构造函数来解决但如此需要两次构造函数过程繁琐,而且还要用到像罗必塔法则这样高等数学的知识还是让我们调整一下思路,利用对数平均数不等式试试看将两边取自然对数得,故,由对数平均数不等式知,即 例3 (2014年江苏省南通二模试题)设函数,其图像与轴交于两点,且()求实数的取值范围;()求证:解:()由,当时,单调递增,不合题意;当时在递减,在递增,则根据条件有两个零点得,从而实数的取值范围为()由,两式相减得,从而, 在以上的对数平均数不等式中,将分别赋值为,则得 ,即,又是单调增函数,且,故例4(2011年辽宁高考理科压轴题)已知函数(1)讨论函数的单调性;(2)设,证明:当时 ,;(3)若函数的图象与轴交于A、B两点,线段AB中点的横坐标为,证明:分析:(1)、(2)略;(3)由(1)知时在单调递减且已知函数的图象与轴交于A、B两点,设,由得,故,所以故要证,即证,即证,也即只需证由对数平均数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 勘察设计注册岩土工程师考试(岩土专业基础)全真题库及答案(2025年全国)
- 旅行社公司试题及答案
- 2025赤峰市松山区招聘9名政府专职消防员模拟试卷及答案详解(各地真题)
- 2025江苏苏州市张家港邮政公司招聘2人考前自测高频考点模拟试题及答案详解1套
- 辽宁鞍山市2025年勘察设计注册土木工程师考试(岩土专业知识)模拟试题及答案
- 2025年临沂兰陵县国有资产运营有限公司公开招聘工作人员(4名)考前自测高频考点模拟试题及完整答案详解1套
- 2025初级会计负债试题及答案
- 2025广西旅发集团广西自贸区医院管理有限公司招聘94人模拟试卷及参考答案详解一套
- 2025年威海职业学院公开招聘工作人员98人考前自测高频考点模拟试题及答案详解(网校专用)
- 机械工程复试面试题及答案
- 2025房屋宅基地买卖合同
- 高一物理力学知识点总结与测试题
- 广东省深圳市罗湖区2025-2026学年高三第一学期开学质量检测语文(含答案)
- 2025年南网春招笔试试题及答案
- 2025餐饮业简易劳动合同范本下载
- 南通蓝浦环评报告书
- 商户维护与管理办法
- 2025年武汉市中考英语试卷真题(含答案)
- 浙江省舟山市2024-2025学年高二下学期6月期末物理+答案
- 2025至2030中国金属铬行业产业运行态势及投资规划深度研究报告
- 2025年陕西省中考英语试题卷(含答案及解析)
评论
0/150
提交评论