


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1定义判别法 使用函数单调性定义进行解题是一个重点,也是一个难点。关键在于对函数单调性定义的理解。掌握这一方法有利于形成解题思路。函数的单调性定义:一般的,设函数的定义域为:1)、如果对于定义域内某个区间上的任意两个自变量,当时都有.那么就说为上的增函数;2)、如果对于定义域内某个区间上的任意两个自变量,当时都有,那么就说上的减函数。例1:已知是方程的两个不等实根,函数的定义域为,判断函数在定义域内的单调性,并证明。证:令,则函数图象为开口向上的抛物线。设,则;将上述两个式子相加得:,由均值不等式,可得 ;,则又,所以,故在区间上是增函数。例2、求证在上为增函数。解:取,分子、分母同时乘以,得,由,所以,函数在为单调递增函数。从上面两个例子可以看出,在应用定义判别法的时候,首先取定定义域中不等两点,对其函数值作差,判断其大小。但是,在做题过程中,不乏对不等式的灵活应用,因此,需熟练掌握一些常用的不等式。知识链接:常用的基本不等式(1)、设 ,则(当且仅当时取等号)。(2)、设,则(当且仅当时取等号)。(3)、设,则; (当且仅当时取等号)。(4)、均值不等式: a、设,则(当且仅当时取等号)。 基本变形:。 b、设,则(当且仅当时取等号)。(5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025北京新能源车指标租赁及服务保障协议合同
- 2025年度生产线生产线设备安装劳务外包合同
- 说明文阅读课件
- 红酒的基本知识培训课件
- 语表五级小鸭子课件
- 语文知识培训加盟课件
- 诗词鉴赏说课课件
- 人力资源招聘流程模板及候选人评估标准
- 红河化妆知识培训课件
- 商业地产策划服务协议
- 2025年探伤工(二级)重点难点考试试卷
- (正式版)DB15∕T 385-2020 《行业用水定额》
- 村级财务业务知识培训课件
- 药品停产管理办法
- 2025年《临床输血技术规范》
- 2025年江苏无锡离婚协议书
- 人员管理办法格式范本
- 北京员工待岗管理办法
- 2025年国家电投校园招聘笔试考点考试题库及答案
- 语文老师职业试讲课件
- 肾损伤诊疗与护理常规
评论
0/150
提交评论