




免费预览已结束,剩余24页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
反比例函数综合练习题一选择题(共18小题)1如图,ABCD的顶点A,B的坐标分别是A(1,0),B(0,2),顶点C,D在双曲线上,边AD交y轴于点E,且四边形BCDE的面积是ABE面积的5倍,则k的值等于()A 12 B 10 C 8 D 62(如图,在OAB中,C是AB的中点,反比例函数y= (k0)在第一象限的图象经过A、C两点,若OAB面积为6,则k的值为()A 2 B 4 C 8 D 16 3如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=x+6于A、B两点,若反比例函数y=(x0)的图象与ABC有公共点,则k的取值范围是()A2k9B2k8C2k5D5k84(2011兰州)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上若点A的坐标为(2,2),则k的值为()ABDCMG(第16题)ABODCxyA1B3C4D1或35如图,A是反比例函数y图像上一点,C是线段OA上一点,且OC:OA1:3作CDx轴,垂足为点D,延长DC交反比例函数图像于点B,SABC8,则k的_6如图,在平面直角坐标系O中,已知直线:,双曲线。在上取点A1,过点A1作轴的垂线交双曲线于点B1,过点B1作轴的垂线交于点A2,请继续操作并探究:过点A2作轴的垂线交双曲线于点B2,过点B2作轴的垂线交于点A3,这样依次得到上的点A1,A2,A3,An,。记点An的横坐标为,若,a2015= 7如图所示,点P(3a,a)是反比例函数y=(k0)与O的一个交点,图中阴影部分的面积为10,则反比例函数的解析式为()Ay=By=Cy=Dy=8如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k0)与ABC有交点,则k的取值范围是()A1k2B1k3C1k4D1k49如图,平面直角坐标系中,OB在x轴上,ABO=90,点A的坐标为(1,2),将AOB绕点A逆时针旋转90,点O的对应点C恰好落在双曲线y=(x0)上,则k的值为()A2B3C4D610如图OAP,ABQ均是等腰直角三角形,点P,Q在函数y=(x0)的图象上,直角顶点A,B均在x轴上,则点B的坐标为()A(,0)B(,0)C(3,0)D(,0)11反比例函数y=在第一象限的图象如图所示,则k的值可能是()A1B2C3D4二填空题(共7小题)12如图,双曲线y=(k0)与O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线已知点P坐标为(1,3),则图中阴影部分的面积为_13(2012武汉)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若ADE的面积为3,则k的值为_14已知y=(m+1)是反比例函数,则m=15反比例函数y=(a3)的函数值为4时,自变量x的值是 _16如图,A、B是反比例函数y=上两点,ACy轴于C,BDx轴于D,AC=BD=OC,S四边形ABDC=14,则k=_17两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PCx轴于点C,交的图象于点A,PDy轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:ODB与OCA的面积相等;四边形PAOB的面积不会发生变化;PA与PB始终相等;当点A是PC的中点时,点B一定是PD的中点其中一定正确的是_三解答题(共5小题)18如图1,已知直线y=2x分别与双曲线y=8/x、y=k/x(x0)交于P、Q两点,且OP=2OQ (1)求k的值(2)如图2,若点A是双曲线y=8/x上的动点,ABx轴,ACy轴,分别交双曲线y=k/x(x0)于点B、C,连接BC请你探索在点A运动过程中,ABC的面积是否变化?若不变,请求出ABC的面积;若改变,请说明理由;(3)如图3,若点D是直线y=2x上的一点,请你进一步探索在点A运动过程中,以点A、B、C、D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由19如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将CEF沿EF对折后,C点恰好落在OB上(1)求证:AOE与BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由20(本题满分12分)如图,过原点的直线和与反比例函数的图象分别交于两点A,C和B,D,连结AB,BC,CD,DA(1)四边形ABCD一定是 四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1和k2之间的关系式;若不可能,说明理由;(3)设P(,),Q(,)(x2 x1 0)是函数图象上的任意两点,试判断,的大小关系,并说明理由 21 已知双曲线y=与直线y=相交于A、B两点第一象限上的点M(m,n)(在A点左侧)是双曲线y=上的动点过点B作BDy轴交x轴于点D过N(0,n)作NCx轴交双曲线y=于点E,交BD于点C(1)若点D坐标是(8,0),求A、B两点坐标及k的值;(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求pq的值反比例函数的典型综合练习题参考答案与试题解析一选择题(共18小题)1如图,ABCD的顶点A,B的坐标分别是A(1,0),B(0,2),顶点C,D在双曲线上,边AD交y轴于点E,且四边形BCDE的面积是ABE面积的5倍,则k的值等于()A12B10C8D6考点:反比例函数综合题2083306专题:探究型分析:分别过C、D作x轴的垂线,垂足为F、G,过C点作CHDG,垂足为H,根据CDAB,CD=AB可证CDHABO,则CH=AO=1,DH=OB=2,由此设C(m+1,n),D(m,n+2),C、D两点在双曲线y=上,则(m+1)n=m(n+2),解得n=2m,设直线AD解析式为y=ax+b,将A、D两点坐标代入求解析式,确定E点坐标,求SABE,根据S四边形BCDE=5SABE,列方程求m、n的值,根据k=(m+1)n求解解答:解:如图,过C、D两点作x轴的垂线,垂足为F、G,DG交BC于M点,过C点作CHDG,垂足为H,ABCD是平行四边形,ABC=ADC,AB=CD,BODG,OBC=GDE,HDC=ABO,CDHABO(ASA),CH=AO=1,DH=OB=2设C(m+1,n),D(m,n+2),则(m+1)n=m(n+2)=k,解得n=2m,D的坐标是(m,2m+2)设直线AD解析式为y=ax+b,将A、D两点坐标代入得,由得:a=b,代入得:mb+b=2m+2,即b(m+1)=2(m+1),解得b=2,y=2x+2,E(0,2),BE=4,SABE=BEAO=2,S四边形BCDE=5SABE=541=10,SABE+S四边形BEDM=10,即2+4m=10,解得m=2,n=2m=4,k=(m+1)n=34=12故选A点评:本题考查了反比例函数的综合运用,解答此题的关键是通过作辅助线,将图形分割,寻找全等三角形,利用边的关系设双曲线上点的坐标,根据面积关系,列方程求解2(2012泸州)如图,在OAB中,C是AB的中点,反比例函数y= (k0)在第一象限的图象经过A、C两点,若OAB面积为6,则k的值为()A2B4C8D16考点:反比例函数系数k的几何意义;三角形中位线定理2083306分析:分别过点A、点C作OB的垂线,垂足分别为点M、点N,根据C是AB的中点得到CN为ADE的中位线,然后设MN=NB=a,CN=b,AM=2b,根据OMAM=ONCN,得到OM=a,最后根据面积=3a2b2=3ab=6求得ab=2从而求得k=a2b=2ab=4解答:解:分别过点A、点C作OB的垂线,垂足分别为点M、点N,如图,点C为AB的中点,CN为AMB的中位线,MN=NB=a,CN=b,AM=2b,又因为OMAM=ONCNOM=a这样面积=3a2b2=3ab=6,ab=2,k=a2b=2ab=4,故选B点评:本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,解题的关键是正确的作出辅助线3(2012黄石)如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A(,0)B(1,0)C(,0)D(,0)考点:反比例函数综合题;待定系数法求一次函数解析式;三角形三边关系2083306专题:计算题分析:求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在ABP中,|APBP|AB,延长AB交x轴于P,当P在P点时,PAPB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可解答:解:把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,A(,2),B(2,),在ABP中,由三角形的三边关系定理得:|APBP|AB,延长AB交x轴于P,当P在P点时,PAPB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=1,b=,直线AB的解析式是y=x+,当y=0时,x=,即P(,0),故选D点评:本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度4(2012福州)如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=x+6于A、B两点,若反比例函数y=(x0)的图象与ABC有公共点,则k的取值范围是()A2k9B2k8C2k5D5k8考点:反比例函数综合题2083306专题:综合题分析:先求出点A、B的坐标,根据反比例函数系数的几何意义可知,当反比例函数图象与ABC相交于点C时k的取值最小,当与线段AB相交时,k能取到最大值,根据直线y=x+6,设交点为(x,x+6)时k值最大,然后列式利用二次函数的最值问题解答即可得解解答:解:点C(1,2),BCy轴,ACx轴,当x=1时,y=1+6=5,当y=2时,x+6=2,解得x=4,点A、B的坐标分别为A(4,2),B(1,5),根据反比例函数系数的几何意义,当反比例函数与点C相交时,k=12=2最小,设与线段AB相交于点(x,x+6)时k值最大,则k=x(x+6)=x2+6x=(x3)2+9,1x4,当x=3时,k值最大,此时交点坐标为(3,3),因此,k的取值范围是2k9故选A点评:本题考查了反比例函数系数的几何意义,二次函数的最值问题,本题看似简单但不容易入手解答,判断出最大最小值的取值情况并考虑到用二次函数的最值问题解答是解题的关键5(2012德州)如图,两个反比例函数和的图象分别是l1和l2设点P在l1上,PCx轴,垂足为C,交l2于点A,PDy轴,垂足为D,交l2于点B,则三角形PAB的面积为()A3B4CD5考点:反比例函数综合题;三角形的面积2083306分析:设P的坐标是(a,),推出A的坐标和B的坐标,求出APB=90,求出PA、PB的值,根据三角形的面积公式求出即可解答:解:点P在y=上,|xp|yp|=|k|=1,设P的坐标是(a,)(a为正数),PAx轴,A的横坐标是a,A在y=上,A的坐标是(a,),PBy轴,B的纵坐标是,B在y=上,代入得:=,解得:x=2a,B的坐标是(2a,),PA=|()|=,PB=|a(2a)|=3a,PAx轴,PBy轴,x轴y轴,PAPB,PAB的面积是:PAPB=3a=故选C点评:本题考查了反比例函数和三角形面积公式的应用,关键是能根据P点的坐标得出A、B的坐标,本题具有一定的代表性,是一道比较好的题目6(2011兰州)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上若点A的坐标为(2,2),则k的值为()A1B3C4D1或3考点:待定系数法求反比例函数解析式;矩形的性质2083306专题:函数思想分析:设C(x,y)根据矩形的性质、点A的坐标分别求出B(2,y)、D(x,2);根据“矩形ABCD的对角线BD经过坐标原点”及直线AB的几何意义求得xy=4,又点C在反比例函数的图象上,所以将点C的坐标代入其中求得xy=k2+2k+1;联立解关于k的一元二次方程即可解答:解:设C(x,y)四边形ABCD是矩形,点A的坐标为(2,2),B(2,y)、D(x,2);矩形ABCD的对角线BD经过坐标原点,设直线BD的函数关系式为:y=kx,B(2,y)、D(x,2),k=,k=,=,即xy=4;又点C在反比例函数的图象上,xy=k2+2k+1,由,得k2+2k3=0,即(k1)(k+3)=0,k=1或k=3,则k=1或k=3故选D点评:本题主要考查了待定系数法求反比例函数解析式、矩形的性质解答此题的难点是根据C(x,y)求得B、D两点的坐标,然后根据三角形相似列出方程=,即xy=47(2011湖州)如图,已知A、B是反比例函数(k0,x0)图象上的两点,BCx轴,交y轴于点C动点P从坐标原点O出发,沿OABC(图中“”所示路线)匀速运动,终点为C过P作PMx轴,PNy轴,垂足分别为M、N设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为()ABCD考点:反比例函数综合题;动点问题的函数图象2083306专题:综合题分析:当点P在OA上运动时,此时S随t的增大而增大,当点P在AB上运动时,S不变,当点P在BC上运动时,S随t的增大而减小,根据以上判断做出选择即可解答:解:当点P在OA上运动时,此时S随t的增大而增大,当点P在AB上运动时,S不变,B、D淘汰;当点P在BC上运动时,S随t的增大而逐渐减小,C错误故选A点评:本题考查了反比例函数的综合题和动点问题的函数图象,解题的关键是根据点的移动确定函数的解析式,从而确定其图象8(2011河北)根据图1所示的程序,得到了y与x的函数图象,如图2若点M是y轴正半轴上任意一点,过点M作PQx轴交图象于点P,Q,连接OP,OQ则以下结论:x0时, OPQ的面积为定值x0时,y随x的增大而增大MQ=2PMPOQ可以等于90其中正确结论是()ABCD考点:反比例函数综合题;反比例函数的性质;反比例函数图象上点的坐标特征;三角形的面积2083306分析:根据题意得到当x0时,y=,当x0时,y=,设P(a,b),Q(c,d),求出ab=2,cd=4,求出OPQ的面积是3;x0时,y随x的增大而减小;由ab=2,cd=4得到MQ=2PM;因为POQ=90也行,根据结论即可判断答案解答:解:、x0,y=,错误;、当x0时,y=,当x0时,y=,设P(a,b),Q(c,d),则ab=2,cd=4,OPQ的面积是(a)b+cd=3,正确;、x0时,y随x的增大而减小,错误;、ab=2,cd=4,正确;设PM=a,则OM=则P02=PM2+OM2=a2+()2=a2+,QO2=MQ2+OM2=(2a)2+()2=4a2+,PQ2=PO2+QO2=a2+4a2+=(3a)2=9a2,整理得a4=2 a有解,POQ=90可能存在,故正确;正确的有,故选B点评:本题主要考查对反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能根据这些性质进行说理是解此题的关键9(2010孝感)双曲线y=与y=在第一象限内的图象如图所示,作一条平行于y轴的直线分别交双曲线于A,B两点,连接OA,OB,则AOB的面积为()A1B2C3D4考点:反比例函数系数k的几何意义2083306分析:如果设直线AB与x轴交于点C,那么AOB的面积=AOC的面积COB的面积根据反比例函数的比例系数k的几何意义,知AOC的面积=2,COB的面积=1,从而求出结果解答:解:设直线AB与x轴交于点CABy轴,ACx轴,BCx轴点A在双曲线y=的图象上,AOC的面积=4=2点B在双曲线y=的图象上,COB的面积=2=1AOB的面积=AOC的面积COB的面积=21=1故选A点评:本题主要考查反比例函数的比例系数k的几何意义反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|10(2010深圳)如图所示,点P(3a,a)是反比例函数y=(k0)与O的一个交点,图中阴影部分的面积为10,则反比例函数的解析式为()Ay=By=Cy=Dy=考点:反比例函数图象的对称性2083306专题:转化思想分析:根据P(3a,a)和勾股定理,求出圆的半径,进而表示出圆的面积,再根据圆的面积等于阴影部分面积的四倍,求出圆的面积,建立等式即可求出a的值,从而得出反比例函数的解析式解答:解:由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为104=40因为P(3a,a)在第一象限,则a0,3a0,根据勾股定理,OP=a于是=40,a=2,(负值舍去),故a=2P点坐标为(6,2)将P(6,2)代入y=,得:k=62=12反比例函数解析式为:y=故选D点评:此题是一道综合题,既要能熟练正确求出圆的面积,又要会用待定系数法求函数的解析式11(2010攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k0)与ABC有交点,则k的取值范围是()A1k2B1k3C1k4D1k4考点:反比例函数图象上点的坐标特征;等腰直角三角形2083306分析:先根据题意求出A点的坐标,再根据AB=AC=2,AB、AC分别平行于x轴、y轴求出B、C两点的坐标,再根据双曲线y=(k0)分别经过A、B两点时k的取值范围即可解答:解:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则A的坐标是(1,1),AB=AC=2,B点的坐标是(3,1),BC的中点坐标为(2,2)当双曲线y=经过点(1,1)时,k=1;当双曲线y=经过点(2,2)时,k=4,因而1k4故选C点评:本题考查一定经过某点的函数应适合这个点的横纵坐标12(2010长春)如图,平面直角坐标系中,OB在x轴上,ABO=90,点A的坐标为(1,2),将AOB绕点A逆时针旋转90,点O的对应点C恰好落在双曲线y=(x0)上,则k的值为()A2B3C4D6考点:反比例函数图象上点的坐标特征;坐标与图形变化-旋转2083306分析:由旋转可得点D的坐标为(3,2),那么可得到点C的坐标为(3,1),那么k等于点C的横纵坐标的积解答:解:易得OB=1,AB=2,AD=2,点D的坐标为(3,2),点C的坐标为(3,1),k=31=3故选B点评:解决本题的关键是利用旋转的性质得到在反比例函数上的点C的坐标13(2010鞍山)如图OAP,ABQ均是等腰直角三角形,点P,Q在函数y=(x0)的图象上,直角顶点A,B均在x轴上,则点B的坐标为()A(,0)B(,0)C(3,0)D(,0)考点:反比例函数综合题2083306专题:数形结合分析:由OAP是等腰直角三角形得到PA=OA,可以设P点的坐标是(a,a),然后把(a,a)代入解析式求出a=2,从而求出P的坐标,接着求出OA的长,再根据ABQ是等腰直角三角形得到BQ=AB,可以设Q的纵坐标是b,因而横坐标是b+2,把Q的坐标代入解析式即可求出B的坐标解答:解:OAP是等腰直角三角形PA=OA设P点的坐标是(a,a)把(a,a)代入解析式得到a=2P的坐标是(2,2)则OA=2ABQ是等腰直角三角形BQ=AB设Q的纵坐标是b 横坐标是b+2把Q的坐标代入解析式y= b= b=1 b+2=1+2=+1点B的坐标为(+1,0)故选B点评:本题考查了反比例函数的图象的性质以及等腰直角三角形的性质,利用形数结合解决此类问题,是非常有效的方法14(2009宁波)反比例函数y=在第一象限的图象如图所示,则k的值可能是()A1B2C3D4考点:反比例函数的性质2083306分析:根据图象,当x=2时,函数值在1和2之间,代入解析式即可求解解答:解:如图,当x=2时,y=,1y2,12,解得2k4,所以k=3故选C点评:解答本题关键是要结合函数的图象,掌握反比例函数的性质15(2009眉山)如图,点A在双曲线y=上,且OA=4,过A作ACx轴,垂足为C,OA的垂直平分线交OC于B,则ABC的周长为()AB5CD考点:反比例函数综合题2083306专题:综合题;数形结合分析:根据线段垂直平分线的性质可知AB=OB,由此推出ABC的周长=OC+AC,设OC=a,AC=b,根据勾股定理和函数解析式即可得到关于a、b的方程组,解之即可求出ABC的周长解答:解:OA的垂直平分线交OC于B,AB=OB,ABC的周长=OC+AC,设OC=a,AC=b,则:,解得a+b=2,即ABC的周长=OC+AC=2故选A点评:本题考查反比例函数图象性质和线段中垂线性质,以及勾股定理的综合应用,关键是一个转换思想,即把求ABC的周长转换成求OC+AC即可解决问题16(2009鄂州)如图,直y=mx与双曲线y=交于点A,B过点A作AMx轴,垂足为点M,连接BM若SABM=1,则k的值是()A1Bm1C2Dm考点:反比例函数系数k的几何意义2083306分析:利用三角形的面积公式和反比例函数的图象性质可知解答:解:由图象上的点A、B、M构成的三角形由AMO和BMO的组成,点A与点B关于原点中心对称,点A,B的纵横坐标的绝对值相等,AMO和BMO的面积相等,且为,点A的横纵坐标的乘积绝对值为1,又因为点A在第一象限内,所以可知反比例函数的系数k为1故选A点评:本题利用了反比例函数的图象在一、三象限和S=|xy|而确定出k的值17(2008临沂)如图,直线y=kx(k0)与双曲线y=交于A,B两点,若A,B两点的坐标分别为A(x1,y1),B(x2,y2),则x1y2+x2y1的值为()A8B4C4D0考点:反比例函数图象的对称性2083306分析:根据直线y=kx(k0)与双曲线y=两交点A,B关于原点对称,求出y1=y2,y2=y1,代入解析式即可解答解答:解:将y=化为xy=2,将A(x1,y1),B(x2,y2)分别代入xy=2,得x1y1=2,x2y2=2因为y1和y2互为相反数,所以y1=y2,y2=y1则x1y2+x2y1=x1y1x2y2=(x1y1+x2y2)=(2+2)=4故选C点评:此题考查了反比例函数图象的对称性,同学们要熟记才能灵活运用18(2007黔东南州)已知正比例函数y=k1x(k10)与反比例函数y=(k20)的图象有一个交点的坐标为(2,1),则它的另一个交点的坐标是()A(2,1)B(2,1)C(2,1)D(2,1)考点:反比例函数图象的对称性2083306分析:根据关于原点对称的两点横坐标,纵坐标都互为相反数即可解答解答:解:反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称,它的另一个交点的坐标是(2,1)故选A点评:此题考查了反比例函数图象的对称性,同学们要熟记才能灵活运用二填空题(共7小题)19(2012深圳)如图,双曲线y=(k0)与O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线已知点P坐标为(1,3),则图中阴影部分的面积为4考点:反比例函数综合题2083306分析:由于O和y=(k0)都关于y=x对称,于是易求Q点坐标是(3,1),那么阴影面积等于两个面积相等矩形的面积减去一个边长是1的正方形的面积解答:解:O在第一象限关于y=x对称,y=(k0)也关于y=x对称,P点坐标是(1,3),Q点的坐标是(3,1),S阴影=13+13211=4故答案是4点评:本题考查了反比例函数的性质,解题的关键是知道反比例函数在k0时关于y=x对称20(2012武汉)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若ADE的面积为3,则k的值为考点:反比例函数综合题2083306分析:由AE=3EC,ADE的面积为3,得到CDE的面积为1,则ADC的面积为4,设A点坐标为(a,b),则k=ab,AB=a,OC=2AB=2a,BD=OD=b,利用S梯形OBAC=SABD+SADC+SODC得(a+2a)b=ab+4+2ab,整理可得ab=,即可得到k的值解答:解:连DC,如图,AE=3EC,ADE的面积为3,CDE的面积为1,ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,BD=OD=b,S梯形OBAC=SABD+SADC+SODC,(a+2a)b=ab+4+2ab,ab=,把A(a,b)代入双曲线y=,k=ab=故答案为点评:本题考查了反比例函数综合题:点在反比例函数图象上,则点的横纵坐标满足其解析式;利用三角形的面积公式和梯形的面积公式建立等量关系21已知y=(m+1)是反比例函数,则m=1考点:反比例函数的定义2083306分析:根据反比例函数的定义即y=(k0),只需令m22=1、m+10即可解答:解:y=(m+1)是反比例函数,解之得m=1故答案为:1点评:本题考查了反比例函数的定义,重点是将一般式(k0)转化为y=kx1(k0)的形式22反比例函数y=(a3)的函数值为4时,自变量x的值是 1考点:反比例函数的定义2083306分析:根据反比例函数的定义先求出a的值,再求出自变量x的值解答:解:由函数y=(a3)为反比例函数可知a22a4=1,解得a=1,a=3(舍去),又a30,则a3,a=1将a=1,y=4代入关于x的方程4=,解得x=1故答案为:1点评:本题考查了反比例函数的定义,重点是将一般式(k0)转化为y=kx1(k0)的形式23如图,A、B是反比例函数y=上两点,ACy轴于C,BDx轴于D,AC=BD=OC,S四边形ABDC=14,则k=16考点:反比例函数系数k的几何意义2083306分析:利用已知条件判断点A与点B的纵横坐标正好相反,从而设出点A的坐标,进而求得点B的坐标,利用SACDB=SCEDSAEB,求得点A的坐标后,用待定系数法确定出k的值解答:解:如图,分别延长CA,DB交于点E,根据ACy轴于C,BDx轴于D,AC=BD=OC,知CED为直角三角形,且点A与点B的纵横坐标正好相反,设点A的坐标为(xA,yA),则点B的坐标为(yA,xA),点E的坐标为(yA,yA),四边形ACDB的面积为CED的面积减去AEB的面积CE=ED=yA,AE=BE=yyA,SACDB=SCEDSAEB=yAyA(yAyA)(yAyA)=yA2=14,yA0,yA=8,点A的坐标为(2,8),k=28=16故答案为:16点评:本题考查了反比例函数系数k的几何意义,关键是要构造直角三角形CED,利用SACDB=SCEDSAEB计算24两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PCx轴于点C,交的图象于点A,PDy轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:ODB与OCA的面积相等;四边形PAOB的面积不会发生变化;PA与PB始终相等;当点A是PC的中点时,点B一定是PD的中点其中一定正确的是考点:反比例函数综合题2083306分析:设A(x1,y1),B(x2,y2),而A、B两点都在的图象上,故有x1y1=x2y2=1,而SODB=BDOD=x2y2=,SOCA=OCAC=x1y1=,故正确;由A、B两点坐标可知P(x1,y2),P点在的图象上,故S矩形OCPD=OCPD=x1y2=k,根据S四边形PAOB=S矩形OCPDSODBSOCA,计算结果,故正确;由已知得x1y2=k,即x1=k,即x1=kx2,由A、B、P三点坐标可知PA=y2y1=,PB=x1x2,=(k1)x2,故错误;当点A是PC的中点时,y2=2y1,代入x1y2=k中,得2x1y1=k,故k=2,代入x1=kx2中,得x1=2x2,可知正确解答:解:(1)设A(x1,y1),B(x2,y2),则有x1y1=x2y2=1,SODB=BDOD=x2y2=,SOCA=OCAC=x1y1=,故正确;(2)由已知,得P(x1,y2),P点在的图象上,S矩形OCPD=OCPD=x1y2=k,S四边形PAOB=S矩形OCPDSODBSOCA=k=k1,故正确;(3)由已知得x1y2=k,即x1=k,x1=kx2,根据题意,得PA=y2y1=,PB=x1x2,=(k1)x2,故错误;(4)当点A是PC的中点时,y2=2y1,代入x1y2=k中,得2x1y1=k,k=2,代入x1=kx2中,得x1=2x2,故正确故本题答案为:点评:本题考查了反比例函数性质的综合运用,涉及点的坐标转化,相等长度的表示方法,三角形、四边形面积的计算,充分运用双曲线上点的横坐标与纵坐标的积等于反比例系数k25如图,双曲线与直线y=mx相交于A、B两点,M为此双曲线在第一象限内的任一点(M在A点左侧),设直线AM、BM分别与y轴相交于P、Q两点,且,则pq的值为2考点:反比例函数综合题;平行线分线段成比例2083306分析:设A(m,n)则B(m,n),过A作ANy轴于N,过M作MHy轴于H,过B作BGy轴于G,根据平行线分线段成比例定理得出=,=,求出p=1+,q=1,代入pq求出即可解答:解:双曲线与直线y=mx相交于A、B两点,设A(m,n)则B(m,n),过A作ANy轴于N,过M作MHy轴于H,过B作BGy轴于G,则BG=AN=m,MHANBG,=,p=1+=1+,=,=,即1+=,q=1,BG=AN,pq=(1+)(1)=2故答案为:2点评:本题考查了平行线分线段成比例定理和一次函数与反比例函数的应用,关键是根据平行线分线段成比例定理得出比例式,题目比较好,但有一定的难度三解答题(共5小题)26(2010荆州)已知:关于x的一元二次方程x2+(2k1)x+k2=0的两根x1,x2满足x12x22=0,双曲线(x0)经过RtOAB斜边OB的中点D,与直角边AB交于C(如图),求SOBC考点:反比例函数综合题2083306分析:首先由一元二次方程根的判别式得出k的取值范围,然后由x12x22=0得出x1x2=0或x1+x2=0,再运用一元二次方程根与系数的关系求出k的值,由k的几何意义,可知SOCA=|k|如果过D作DEOA于E,则SODE=|k|易证ODEOBA,根据相似三角形的面积比等于相似比的平方,得出SOBA,最后由SOBC=SOBASOCA,得出结果解答:解:x2+(2k1)x+k2=0有两根,=(2k1)24k20,即由x12x22=0得:(x1x2)(x1+x2)=0当x1+x2=0时,(2k1)=0,解得,不合题意,舍去;当x1x2=0时,x1=x2,=(2k1)24k2=0,解得:符合题意y=,双曲线的解析式为:过D作DEOA于E,则DEOA,BAOA,DEAB,ODEOBA,点评:本题综合考查了一元二次方程根的判别式、根与系数的关系,反比例函数比例系数k的几何意义,相似三角形的性质等多个知识点此题难度稍大,综合性比较强,注意对各个知识点的灵活应用27(2011常州)在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P点E为直线l2上一点,反比例函数(k0)的图象过点E与直线l1相交于点F(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF若k2,且OEF的面积为PEF的面积的2倍,求E点的坐标;(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与PEF全等?若存在,求E点坐标;若不存在,请说明理由考点:相似三角形的判定与性质;反比例函数综合题;全等三角形的判定与性质;勾股定理2083306分析:(1)根据反比例函数中k=xy进行解答即可;(2)当k2时,点E、F分别在P点的右侧和上方,过E作x轴的垂线EC,垂足为C,过F作y轴的垂线FD,垂足为D,EC和FD相交于点G,则四边形OCGD为矩形,再求出SFPE=k2k+1,根据SOEF=S矩形OCGDSDOFSEGFSOCE即可求出k的值,进而求出E点坐标;(3)当k2时,只可能是MEFPEF,作FHy轴于H,由FHMMBE可求出BM的值,再在RtMBE中,由勾股定理得,EM2=EB2+MB2,求出k的值,进而可得出E点坐标;当k2时,只可能是MFEPEF,作FQy轴于Q,FQMMBE得,=,可求出BM的值,再在RtMBE中,由勾股定理得,EM2=EB2+MB2,求出k的值,进而可得出E点坐标解答:解:(1)若点E与点P重合,则k=12=2;(2)当k2时,如图1,点E、F分别在P点的右侧和上方,过E作x轴的垂线EC,垂足为C,过F作y轴的垂线FD,垂足为D,EC和FD相交于点G,则四边形OCGD为矩形,PFPE,SFPE=PEPF=(1)(k2)=k2k+1,四边形PFGE是矩形,SPFE=SGEF,SOEF=S矩形OCGDSDOFSEGFSOCE=k(k2k+1)=k21SOEF=2SPEF,k21=2(k2k+1),解得k=6或k=2,k=2时,E、F重合,k=6,E点坐标为:(3,2);(3)存在点E及y轴上的点M,使得MEFPEF,当k2时,如图2,只可能是MEFPEF,作FHy轴于H,FHMMBE,=,FH=1,EM=PE=1,FM=PF=2k,=,BM=,在RtMBE中,由勾股定理得,EM2=EB2+MB2,(1)2=()2+()2,解得k=,此时E点坐标为(,2),当k2时,如图3,只可能是MFEPEF,作FQy轴于Q,FQMMBE得,=,FQ=1,EM=PF=k2,FM=PE=1,=,BM=2,在RtMBE中,由勾股定理得,EM2=EB2+MB2,(k2)2=()2+22,解得k=或0,但k=0不符合题意,k=此时E点坐标为(,2),符合条件的E点坐标为(,2)(,2) 点评:本题考查的是相似三角形的判定与性质,涉及到反比例函数的性质、全等三角形的判定与性质及勾股定理,解答此题的关键是根据题意作出辅助线,构造出相似三角形,利用相似三角形的性质解答28如图,在平面直角坐标系内,一次函数y=kx+m(k,m是常数,k0)的图象与反比例函数y=(n是常数,n0,x0)的图象相交于A(1,4)、B(a,b)两点,其中a1过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD、DC、CB(1)求n的值;(2)若ABD的面积为6,求一次函数y=kx+m的关系式考点:反比例函数综合题2083306分析:(1)根据函数图象上的点符合函数解析式,将A(1,4)代入y=即可求出n的值;(2)先根据A、B两点在反比例函数的图象上可求出ab的值,再根据三角形的面积公式可求出a的值,进而可得出B点坐标,由A、B两点的坐标即可求出一次函数y=kx+m的解析式解答:解:(1)将A(1,4)代入y=,得n=4(2分)(2)A(1,4)、B(a,b)在反比例函数图象上,ab=4(3分)SABD=a(4b)=2aab=2a2=6(4分)a=4,B点坐标为(4,1)(5分)将A(1,4)、B(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字孪生在城市能源规划与建设中的节能减排策略报告
- 咨询工程师考试黑钻押题及完整答案详解【名校卷】
- 中级银行从业资格之中级银行业法律法规与综合能力能力测试备考题及完整答案详解(网校专用)
- 软件定义网络-第7篇-洞察及研究
- 重难点解析京改版数学9年级上册期末试题附答案详解【培优】
- 咨询工程师全真模拟模拟题【网校专用】附答案详解
- 自考公共课题库试题【夺冠系列】附答案详解
- 财富管理行业客户需求与服务升级对财富管理行业的启示与建议报告
- 中级银行从业资格之中级银行业法律法规与综合能力预测复习(考试直接用)附答案详解
- 环保公司成本核算管理细则
- 2025年中国智慧养殖行业市场占有率及投资前景预测分析报告
- 电影院安全生产与安全管理规定制度
- 废气处理合同协议
- 镁铝合金行业前景
- 2025-2030中国余热回收行业市场现状供需分析及投资评估规划分析研究报告
- 无人机物流配送服务手册
- 见证取样送检计划方案
- 二年级上册语文课内阅读理解每日一练(含答案)
- 2025-2030年中国功率器件市场发展趋势规划研究报告
- 基层管理培训课程
- 宇宙飞船的发射与回收技术分析
评论
0/150
提交评论