




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
填空题的解法1.内容概要:填空题只填结果而不要过程,这个结果可以象做解答题那样,由逻辑推理,计算而得到(演绎推理). 但由于不要过程,也可将一般情形特殊化后再求结果(类比推理),还可从个别事实中归纳出一般性的结论(归纳推理),所以解填空题的基本策略是要在“准”、“巧”、“快”上下功夫巧;解题的要领是:快运算要快,力戒小题大作;稳变形要稳,不可操之过急;全答案要全,力避残缺不齐;活解题要活,不要生搬硬套;细审题要细,不能粗心大意.常用的方法有:直接法,特例法,合理猜想法,图象法.2.典例精析: 一、直接法这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果.例1:(08四川延考)已知,为空间中一点,且,则直线与平面所成角的正弦值为 . 【解析】由对称性点在平面内的射影必在的平分线上作于,连结,则由三垂线定理,设,则,又,所以,因此直线与平面所成角的正弦值.例2.(08年江苏)若,则的最大值为 .【解析】由于是定值,为求其面积的最大值,只须求出顶点到边的距离的最大值即可而,说明点是运动变化的,那么它的轨迹是什么呢?到此我们的思维“进入了”解析几何的领域.如图1,以点为坐标原点,以所在直线为轴,建立平面直角坐标系,则,由题意不妨设点 在第一象限(),则由,得,即.当时,此时,所以的最大值为.【点评】本题直接用“形”有一定的难度,若利用“数”运算,建立直角坐标系求解,则问题利于解决这正好体现出“数形结合”思想,也进一步验证了华罗庚教授的“数缺形时少直观,形少数时难入微”的数学思维典语二、特殊化法一个结论在一般情形下成立,在特殊情形下必成立。填空题只要结果,不要过程,所以当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可将填空题中的一般情形特殊化(将图形、图形的位置特殊化或给字母赋于特殊值等)再求解,这种解填空题的方法, 叫特殊化法。凡在一般情形下探求结论的填空题,都可用特例法。 例3.(07年海南、宁夏)一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等设四棱锥、三棱锥、三棱柱的高分别为,则_.【解析】由于所求的为定值,所以可将三棱柱特殊化为直三棱柱.又三棱锥、四棱锥的底面边长和侧棱都相等,所以取三棱柱为各棱长都相等的正三棱柱.设正三棱柱的各棱长为,则,.例4.(07年江西)已知数列对于任意,有,若,则【解析】由题意,得,从而应当填.【点评】我们知道,在中,取,得;取,得,等等这种取特殊值的方法,显示是由一般到特殊的思维方式事实上,本题的数列当中,隐含了子数列是等比数列,你能写出一般的通项公式吗?例5.(08年全国)在中,若以,为焦点的椭圆经过点,则该椭圆的离心率 【解析】设,则显然半焦距,.,.由椭圆定义,得,故.【点评】本题以三角形为载体考查椭圆的有关知识,一般先设,由求出(中含有参数),然后利用椭圆的概念即可求出离心率,这属常规解法本解答取,解题思路与常规方法一样,但是由于将取成常数,计算量降低了,这种解题方法属赋特殊值法,在一定程度上能够简化运算,在复习备考中应该重视这种解题方法三、合理猜想法合理猜想,可以从特殊情形中发现规律,得出一般的正确结论. 合理猜想法多用于探索规律的一类题.例6.(08年湖北)观察下列等式: 可以推测,当()时,_, .【解析】观察各个等式右边最高次项的系数为:,;各个等式右边次高次项的系数为:,;第三高次项的系数为:,( ),(),( ),归纳得出;各个等式右边第四高次项的系数为:,归纳得出.【点评】此题着重考查学生的观察、归纳、猜测能力以及思维的敏捷性、灵活性它要求学生善于根据问题的结构特征,从众多的数学信息中提取、挖掘出有效的信息,灵活地运用有关的知识,映衬出相应的意象,找出有效的突破口,从而挖掘规律,发现规律,应用规律例7.(08年北京)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第棵树种植在点处,其中,当时, 表示非负实数的整数部分,例如,.按此方案,第6棵树种植点的坐标应为_;第2008棵树种植点的坐标应为_【解析】当时,则,解得;当时,,则,解得;当时,则,解得;当时,,则,解得;,如此类推。如通过观察、归纳总结得出一般的规律为:当()时,第棵树种植在点为,于是当时,从而第2008棵树种植点的坐标应为.【点评】此题是将周期数列加以变更、迁移、整合而成,有创意,有新意,给学生探索问题提供了广阔的空间和自由度,特别对学生观察、归纳、猜测、综合分析等能力以及耐心、毅力得到全面的考查,有利于甄别学生的思维层次和数学素养 本题要求学生善于根据问题的结构特征,从众多的信息中提取、挖掘出有效的信息,从而找出问题的切入点,开启成功之门四、图象法根据试题的特点,找出其几何意义,画出符合题意的辅助图形,借助图形的直观性进行分析探究,得出正确结论.这是一种数形结合的解题策略,在填空题中有着广泛的应用.例8.设等差数列的前项和为,若,则的最大值为_.【解析】由已知得,.在坐标系中分别作出直线,得可行域及两直线的交点.设目标函数,作直线:,当平移直线经过点时,有最大值5,即的最大值为5,选B. 【点评】若试题给出的是单纯的线性规划问题,则百味全无.而命题者悄悄地将换成,同学们在解题过程中必须看透这一伎俩,将数列问题转化为线性规划问题,顿觉简单异常.本题设计遵循基础与能力并重,知识与能力并举的原则,意在考查等差数列的通项公式、前项和公式以及不等式性质等知识,但实在考查数形结合的思想方法【总结提炼】综上,我们主要介绍了填空题几种常见的解法,当然解法会很多,所以我们要在平时注意发现、探索、总结,小题终究是小题,只要多思考,多挖掘新方法、巧方法,那我们解题时才有事半功倍的效果.3.跟踪练习:1.设是和的等比中项,则的最大值为_.2.函数在上的最大值为_.3.已知函数()的图象过点,若有4个不同的正数满足,且(),则_.4.若、满足条件(),则的最大值为_ 5.有20张卡片上分别写有数字1 ,2 ,20 ,将它们放入一个盒子内. 有4 个人从中不放回地各抽取一张卡片,抽到两个较小数字的两人在同一组,抽到两个较大数字的两人在同一组. 现其中有两人抽到5、14 ,则此两人在同一组的概率等于_(用最简分数作答).6.已知三个正数,满足条件,则的最小值为_.参考答案:1. 构造向量,所以,.由数量积的性质,得,即的最大值为2.2. ,令得,所以,当时,当时,所以当时,. 3.,又,则,所以周期.作出在上的图象知:若,满足条件的()存在,且,关于直线对称,关于直线对称,;若,满足条件的()存在,且,关于直线对称,关于直线对称,.4. 不等式()表示的区域是如图所示的菱形的内部, ,当,点到点的距离最大,此时的最大值为;当,点到点的距离最大,此时的最大值为3.5. 由于已有两人分别抽到5和14两张卡片,则另外两人只需从剩下的18张卡片中抽取,共有种情况.抽到5 和14的两人在同一组,有两种情况:(1) 5 和14 为较小两数,则另两人需从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津医保考试题目及答案
- 支付系统应急响应-洞察及研究
- 2025年公需课专业技术人员的职业发展与时间管理考试题(含答案)
- 2025年高压低压电工证考试题库附答案(含各题型)
- 2025年高级经济师《工商管理》试题及答案
- 2025年高级会计师资格实战演练真题解析与答案
- 旅营体制考试题及答案
- 生活类口语试题及答案
- 运动健康饮食试题及答案
- 财务内部群管理办法
- 《电子商务基础(第二版)》课件 第二章 电子商务交易模式
- 2025年交管12123驾驶证学法减分题库(含答案)
- 2025+CSCO胃癌诊疗指南解读
- 《中国高铁发展》课件
- 一级消防工程师消防安全技术综合能力考试真题卷(2025年)
- 南通市2025届高三第二次调研测试语文试题含答案
- 配电室防汛应急预案
- 成都市商品房购买(预售)合同标准版5篇
- 二年级道德与法治上册 第四单元 我们生活的地方 16 家乡新变化教学实录 新人教版
- 2025年部编版小学二年级语文上册全册教案
- 高中主题班会 《铭记历史强国有我》课件-高一上学期爱国主义教育主题班会
评论
0/150
提交评论