第六章供应链中的需求预测.ppt_第1页
第六章供应链中的需求预测.ppt_第2页
第六章供应链中的需求预测.ppt_第3页
第六章供应链中的需求预测.ppt_第4页
第六章供应链中的需求预测.ppt_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七章 DemandForecastinginaSupplyChain LearningObjectives Understandtheroleofforecastingforbothanenterpriseandasupplychain Identifythecomponentsofademandforecast Forecastdemandinasupplychaingivenhistoricaldemanddatausingtime seriesmethodologies Analyzedemandforecaststoestimateforecasterror RoleofForecastinginaSupplyChain ThebasisforallplanningdecisionsinasupplychainUsedforbothpushandpullprocessesProductionscheduling inventory aggregateplanningSalesforceallocation promotions newproductionintroductionPlant equipmentinvestment budgetaryplanningWorkforceplanning hiring layoffsAllofthesedecisionsareinterrelated CharacteristicsofForecasts ForecastsarealwaysinaccurateandshouldthusincludeboththeexpectedvalueoftheforecastandameasureofforecasterrorLong termforecastsareusuallylessaccuratethanshort termforecastsAggregateforecastsareusuallymoreaccuratethandisaggregateforecastsIngeneral thefartherupthesupplychainacompanyis thegreateristhedistortionofinformationitreceives ComponentsandMethods CompaniesmustidentifythefactorsthatinfluencefuturedemandandthenascertaintherelationshipbetweenthesefactorsandfuturedemandPastdemandLeadtimeofproductreplenishmentPlannedadvertisingormarketingeffortsPlannedpricediscountsStateoftheeconomyActionsthatcompetitorshavetaken ComponentsandMethods QualitativePrimarilysubjectiveRelyonjudgmentTimeSeriesUsehistoricaldemandonlyBestwithstabledemandCausalRelationshipbetweendemandandsomeotherfactorSimulationImitateconsumerchoicesthatgiverisetodemand ComponentsofanObservation Observeddemand O systematiccomponent S randomcomponent R Systematiccomponent expectedvalueofdemandLevel currentdeseasonalizeddemand Trend growthordeclineindemand Seasonality predictableseasonalfluctuation Randomcomponent partofforecastthatdeviatesfromsystematiccomponentForecasterror differencebetweenforecastandactualdemand BasicApproach Understandtheobjectiveofforecasting Integratedemandplanningandforecastingthroughoutthesupplychain Identifythemajorfactorsthatinfluencethedemandforecast Forecastattheappropriatelevelofaggregation Establishperformanceanderrormeasuresfortheforecast Time SeriesForecastingMethods ThreewaystocalculatethesystematiccomponentMultiplicativeS levelxtrendxseasonalfactorAdditiveS level trend seasonalfactorMixedS level trend xseasonalfactor StaticMethods TahoeSalt Table7 1 TahoeSalt Figure7 1 EstimateLevelandTrend Periodicityp 4 t 3 TahoeSalt Figure7 2 TahoeSalt Figure7 3 Alinearrelationshipexistsbetweenthedeseasonalizeddemandandtimebasedonthechangeindemandovertime EstimatingSeasonalFactors Figure7 4 EstimatingSeasonalFactors AdaptiveForecasting Theestimatesoflevel trend andseasonalityareadjustedaftereachdemandobservationEstimatesincorporateallnewdatathatareobserved AdaptiveForecasting StepsinAdaptiveForecasting InitializeComputeinitialestimatesoflevel L0 trend T0 andseasonalfactors S1 Sp ForecastForecastdemandforperiodt 1EstimateerrorComputeerrorEt 1 Ft 1 Dt 1ModifyestimatesModifytheestimatesoflevel Lt 1 trend Tt 1 andseasonalfactor St p 1 giventheerrorEt 1 MovingAverage UsedwhendemandhasnoobservabletrendorseasonalitySystematiccomponentofdemand levelThelevelinperiodtistheaveragedemandoverthelastNperiodsLt Dt Dt 1 Dt N 1 NFt 1 LtandFt n LtAfterobservingthedemandforperiodt 1 revisetheestimatesLt 1 Dt 1 Dt Dt N 2 N Ft 2 Lt 1 MovingAverageExample AsupermarkethasexperiencedweeklydemandofmilkofD1 120 D2 127 D3 114 andD4 122gallonsoverthepastfourweeksForecastdemandforPeriod5usingafour periodmovingaverageWhatistheforecasterrorifdemandinPeriod5turnsouttobe125gallons MovingAverageExample L4 D4 D3 D2 D1 4 122 114 127 120 4 120 75ForecastdemandforPeriod5F5 L4 120 75gallonsErrorifdemandinPeriod5 125gallonsE5 F5 D5 125 120 75 4 25ReviseddemandL5 D5 D4 D3 D2 4 125 122 114 127 4 122 SimpleExponentialSmoothing UsedwhendemandhasnoobservabletrendorseasonalitySystematiccomponentofdemand levelInitialestimateoflevel L0 assumedtobetheaverageofallhistoricaldata SimpleExponentialSmoothing Revisedforecastusingsmoothingconstant0 a 1 GivendataforPeriods1ton Currentforecast Thus SimpleExponentialSmoothing Supermarketdata E1 F1 D1 120 75 120 0 75 Trend CorrectedExponentialSmoothing Holt sModel AppropriatewhenthedemandisassumedtohavealevelandtrendinthesystematiccomponentofdemandbutnoseasonalitySystematiccomponentofdemand level trend Trend CorrectedExponentialSmoothing Holt sModel ObtaininitialestimateoflevelandtrendbyrunningalinearregressionDt at bT0 a L0 bInPeriodt theforecastforfutureperiodsisFt 1 Lt TtandFt n Lt nTtRevisedestimatesforPeriodtLt 1 aDt 1 1 a Lt Tt Tt 1 b Lt 1 Lt 1 b Tt Trend CorrectedExponentialSmoothing Holt sModel MP3playerdemandD1 8 415 D2 8 732 D3 9 014 D4 9 808 D5 10 413 D6 11 961a 0 1 b 0 2UsingregressionanalysisL0 7 367andT0 673ForecastforPeriod1F1 L0 T0 7 367 673 8 040 Trend CorrectedExponentialSmoothing Holt sModel RevisedestimateL1 aD1 1 a L0 T0 0 1x8 415 0 9x8 040 8 078T1 b L1 L0 1 b T0 0 2x 8 078 7 367 0 8x673 681WithnewL1F2 L1 T1 8 078 681 8 759ContinuingF7 L6 T6 11 399 673 12 072 Trend andSeasonality CorrectedExponentialSmoothing Appropriatewhenthesystematiccomponentofdemandisassumedtohavealevel trend andseasonalfactorSystematiccomponent level trend xseasonalfactorFt 1 Lt Tt St 1andFt l Lt lTt St l Trend andSeasonality CorrectedExponentialSmoothing Afterobservingdemandforperiodt 1 reviseestimatesforlevel trend andseasonalfactorsLt 1 a Dt 1 St 1 1 a Lt Tt Tt 1 b Lt 1 Lt 1 b TtSt p 1 g Dt 1 Lt 1 1 g St 1a smoothingconstantforlevelb smoothingconstantfortrendg smoothingconstantforseasonalfactor Winter sModel L0 18 439T0 524S1 0 47 S2 0 68 S3 1 17 S4 1 67F1 L0 T0 S1 18 439 524 0 47 8 913TheobserveddemandforPeriod1 D1 8 000ForecasterrorforPeriod1 E1 F1 D1 8 913 8 000 913 Winter sModel Assumea 0 1 b 0 2 g 0 1 reviseestimatesforlevelandtrendforperiod1andforseasonalfactorforPeriod5L1 a D1 S1 1 a L0 T0 0 1x 8 000 0 47 0 9x 18 439 524 18 769T1 b L1 L0 1 b T0 0 2x 18 769 18 439 0 8x524 485S5 g D1 L1 1 g S1 0 1x 8 000 18 769 0 9x0 47 0 47F2 L1 T1 S2 18 769 485 0 68 13 093 TimeSeriesModels MeasuresofForecastError Decliningalpha SelectingtheBestSmoothingConstant Figure7 5 SelectingtheBestSmoothingConstant Figure7 6 ForecastingDemandatTahoeSalt MovingaverageSimpleexponentialsmoothingTrend correctedexponentialsmoothingTrend andseasonality correctedexponentialsmoothing ForecastingDemandatTahoeSalt Figure7 7 ForecastingDemandatTahoeSalt MovingaverageL12 24 500F13 F14 F15 F16 L12 24 500s 1 25x9 719 12 148 ForecastingDemandatTahoeSalt Figure7 8 ForecastingDemandatTahoeSalt SingleexponentialsmoothingL0 22 083L12 23 490F13 F14 F15 F16 L12 23 490s 1 25x10 208 12 761 ForecastingDemandatTahoeSalt Figure7 9 ForecastingDemandatTahoeSalt Trend CorrectedExponentialSmoothingL0 12 015andT0 1 549L12 30 443andT12 1 541F13 L12 T12 30 443 1 541 31 984F14 L12 2T12 30 443 2x1 541 33 525F15 L12 3T12 30 443 3x1 541 35 066F16 L12 4T12 30 443 4x1 541 36 607s 1 25x8 836 11 045 ForecastingDemandatTahoeSalt Figure7 10 ForecastingDemandatTahoeSalt Trend andSeasonality CorrectedL0 18 439T0 524S1 0 47S2 0 68S3 1 17S4 1 67L12 24 791T12 532F13 L12 T12 S13 24 791 532 0 47 11 940F14 L12 2T12 S13 24 791 2x532 0 68 17 579F15 L12 3T12 S13 24 791 3x532 1 17 30 930F16 L12 4T12 S13 24 791 4x532 1 67 44 928s 1 25x1 469 1 836 ForecastingDemandatTahoeSalt Table7 2 TheRoleofITinForecasting ForecastingmoduleiscoresupplychainsoftwareCanbeusedtobestdetermineforecastingmethodsforthefirmandbyproductcategoriesandmarketsRealtimeupdateshelpfirmsrespondquicklytochangesinmarketplaceFacilitatedemandplanning RiskManagement Errorsinforecastingcancausesignificantmis

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论