




已阅读5页,还剩53页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 Measuringmarketrisk VaRapproach 3 1Introduction3 2UnderstandingVaR3 3Riskmetrics3 4Historicsimulation3 5Mote Carlosimulation3 6BISstandardizedmodel 3 1Introduction J P MorganG30BISInvolvingprobabilitycomponentalongwithlossseveritycomponentinriskmeasurement dealingwiththelimitationofsensitiveapproachesVaRRevolutionExtensiontoCreditandOperationalriskandthereforeintegratedriskmanagement AdvantagesofVaRapproach oversensitivityapproach completemeasureofrisk Measuringriskusingthesameunit dollarAggregateviewofaportfolioriskaccountingforleverageandcorrelationeffectsintegratednature notonlyderivativesbutalsoallotherfinancialinstruments andcanbebroadenedfrommarketrisktoothertypesoffinancialriskone numberindicator 3 2UnderstandingVaR QuestionsleadingustoVaRmeasureDefiningValueatRiskKeyelementsofcalculatingVaRWhatdoesPDFcurvetell Approachestoprobabilitydistribution typesofVaR WorkingoutVaRthroughariskfactor QuestionsleadingustoVaRmeasure Asaportfoliomanager youmaybeaskedbyyourbossfollowingquestions Q1 Givenamarketchangeorshock howmuchcouldyourportfoliosuffer Q2 Ifitturnsouttobeabaddaytomorrow whatistheworstlossofyourinvestment Thefirstisasensitivityquestion andyoucangiveaclearanswerafteryoudoasensitivitymeasureasweshowedinpreviouslectures Thesecondisnotaclearquestion Beforeyoutrytoanswerityouhavetoaskback Whatdoyoumeanpreciselyby abadday or Howbadthedayyousupposeittobe SensitivityQfollowedbyprobabilityQ Q1leadingtoVaRmeasure ExampleofsensitivityQ Givena25bpsyieldrise howmuchcouldyourinvestmentportfolio P 1m MD 2ys suffer A dP D dR 1 R P MD dR P 2 0 0025 1 000 000 5 000 Youmaybefurtherasked Howlikelycoulditbethecase Ormoreprecisely giventhenormalmarketcondition howlikelywouldyourportfoliosuffernotmorethanthatamountofmoneyoveratargetholdingperiod AVaRquestion Morefrequently thequestionisputinanotherway Whatistheworstlossyourportfoliocouldsufferoveratargetholdingperiodwithprobabilityofagivenlevel say1 undernormalmarketcondition AstandardVaRquestion Define badday andcompleteQ2 Q2leadingtoVaRmeasure Oneeasywaytodefinea badday istodefinethelosssizeorseverity Butthiswillmakethequestionmakenosense Itisreasonable andmeaningful todefinea badday insuchawaythatthedayissobad orthelossissoseverethatsuchaday orloss occursundernormalmarketconditiononlyonceoutofevery20 tobedefined tradingdays putanotherway thechance probability oftheoccurrence loss isonly5 tobedefined Ifitturnsouttobeabaddaytomorrow whatwillbetheworstlossofyourinvestment giventhatdayhappensonceoutofevery20tradingdays AstandardVaRquestion DefiningValueatRisk Definition TheworstlossoveragiventargetholdingperiodatagivenconfidencelevelundernormalmarketconditionTwopre specifiedvariables HoldingPeriod 1day 1weekormore ConfidenceLevel 95 99 orevenhigher VaRisananswerto Undernormalmarketcondition whatistheworstlosscouldmyinvestmentportfoliosufferwithaprobabilityof5 withinonetradingday Iam95 99 surethattheinvestmentportfoliowillsuffernotmorethan 5 000 20 000 lossover1dayundernormalmarketcondition KeyelementsofcalculatingVaR HoldingperiodConfidencelevelProbabilitydistributionofreturnProbabilitydensityfunction PDF inthecaseofcontinuousrandomvariableWorkingouttheprobabilitydistributionofreturnisthemostdifficultpartoftheVaRwork Holdingperiod DEARandMore than one dayVaR Holdingperiodisthetargettimehorizonduringwhichyouholdyourinvestmentposition alsotargetmeasuringperiod One dayVaR orDailyVaRisusuallycalculated especiallyinthecaseofRiskmetricsmodel ItisusuallytermedDailyEarningatRisk DEAR More than one dayVaRcanbederivedfromDEARfromfollowingformula Undertheassumptionthatmarketvalidityisconstantovertime N DayVaR DEAR NBISrequires10 dayVaR Confidencelevel ProbabilityofthelossDefiningthe badday frequencyofthebaddayLevelofconfidenceoveryourlossforecast riskestimate Confidenceinterval statisticallytermed 95 Riskmetricsvs 99 BISrequirementThehighertheCL thebiggertheVaRnumber WhatcouldhappenifCLissettoeither100 or0 Answersarerightstatementsbutnonsense WhatdoesPDFcurvetell aEb E EE ProbabilityDistributionofarandomvariableXX randomreturn orvalue L G ofinvestmentE expectedreturn theprobabilityweightedaveragevalueofallpossibleoutcomesoftherandomvariable SD variance measureofdispersion expectedsurprisesVarianceistheprobabilityweightedsumofthesquareddeviationsofalltheoutcomesfromtheirexpectedvalue orsimply theexpectedsquareddeviationoftherateofreturnfromitsexpectation PDF1 F a P X a PDF2 N a P X a X X Area P X a Area P a X b Area P X b 1 F b 68 26 WhatdoesPDFcurvetell aEb a E Eb E ProbabilityDistributionofarandomvariableXPDFtellstheprobabilitythattherandomvariable X doesnotexceedthespecifiedcriticalvaluea F a P X a whichcanbeillustratedbythesizeofthearealefttothecriticalvalue Thesizeoftheareaindicatestheprobabilitythatthevariablefallwithinthetwocriticalvalues ThewholeareaunderneaththePDFcurveis1 PDF1 F a P X a PDF2 N a P X a X X Area P X a Area P a X b Area P X b 1 F b 68 26 Normaldistribution Anormaldistributioncanbecompletelydescribedbytwofeatures expectedvalue E andstandarddeviation NDissymmetricandbell shaped smalltailoneitherside whichononehandmeansprobabilityofextremevalueoneithersideissmall ontheotherhandmeanschangesoftherandomvariablearecenteredarounditsmeanvalue 68 26 ofchangesfallwithin1SDoneitherside 95 44 within2SDs 99 74 within3SDs90 within1 65SDs 95 within1 96SDs 98 within2 33SDsNormaldistributionassumptioninfinanceandfattailproblem a E Eb E PDF N a P X a X 68 26 ConfidencelevelandcriticalvalueofaPDF SupposethePDFofyourinvestmentportfolioisgivenasfigureinnextslide Supposeyourcurrentpositionis 100 000 theoreticallyreflectingtheexpectedvalueofrandomlyfluctuatingvalueofyourportfolio SupposetheSD 5 000 1 65 8 250Thecriticalvalue1 65 awayfromEintheleftsideis 8 250inlossor 91 750invalue whichindicates With95 confidencelevel youbelieveyourlosswillnotexceed 8 250 G LofPortfolio ValueofPortfolio 8 2500 8 250 91 750 100 000 108 250 E 1 65 EE 1 65 90 5 5 PDFofyourinvestmentportfolio Approachestoprobabilitydistribution typesofVaR HistoricalsimulationVariance covarianceapproachMonte Carlosimulation Howaboutwhentheprobabilitydistributionofyourportfolioisnotdirectlyknown Dueto 1 Integratedcontributionfromdifferentriskfactors likeinterestrisk FXrisk etc 2 Aggregationofmultipletypesofassets likepositionsinbonds equity commodities 3 Moreimportantly shorthistoryanddynamicadjustmentofyourportfolioThen weturnto 1 decomposingtheriskintoriskfactors 2 workingoutthePDFofriskfactors 3 andlinkingtheriskfactorchangetoyourportfoliovaluechangeusingsensitivity WorkingoutVaRthroughariskfactor Marketrisk Estimatedpotentiallossunderadversecircumstances valuepricePotential VolatilityVaR ofthe sensitivityof adversemoveofriskpositionthepositioninyieldfactor VaR position PricevolatilityofthepositionPricesensitivity unit or 1sensitivity i e 1position ssensitivitytoariskfactor likeinterestrate stockprice changePricevolatility unit or 1volatilitye g 1position svolatility Marketrisk Estimatedpotentiallossunderadversecircumstances valuepricePotential VolatilityVaR ofthe sensitivityof adversemoveofriskpositionthepositioninyieldfactor VaR position Pricevolatilityofanasset valuepriceProbability VolatilityVaR ofthe sensitivityof Distributionofriskpositionthepositionofriskfactorfactor givenaunitchangeinriskfactorVaR 100 000 0 005 1P 1bp 16 5bps 95 CL 9 250 95 CL VaR P S DR valueofyourposition Unitsensitivityofyourpositiongivenaunitchangeofriskfactor BadChanges Volatility PDF ofriskfactor 1position svolatility Definethe badchange ofriskfactor Equivalenttodefininga badday Itiseasytodefineoridentifythe baddirection ofriskfactorchange e g riseininterestrate yield isadversechangedirectiontoyourlongpositioninbond Howtodefineamorespecific badchange ismoretroublesome youneedtospecify howbadthat changewillbe Oneeasywaytodefinea badchange istodefinethesizeorseverityofthechange Butthisdoesnotgeneratetoomuchsenseforriskmanagementsincetheprobabilityisnotspecified Everyday undernormalmarketcondition youexperienceadversechangeswhilethemarketfluctuates someadversechangesfrequentlyoccurbutaretolerabletoyouduetotheirrelativelysmallsize othersareseriousorevendisastroustoyou butdonothappenveryoften Asariskmanager yourfocusisonthelatter Itisreasonable andmeaningful todefineabadchangeinsuchawaythatabadchangeisanadversechangewhichhasatmost 5 chancetooccurundernormalmarketcondition putanotherway itoccursonceoutofevery 20 timesofexperimentorobservation Thisdefinitioncombinestogethertheseverityandprobabilityofthe badchange 3 3Riskmeticsmodel IntroductionDennisWeatherstone sOrderBasicmethodologyandprocessCalculatingVaRforanaiveinvestmentportfolioofanFIFixed incomesecuritiesFXEquitiesPortfolioaggregationCriticismsagainstRiskmetricsBISregulationonVaR basedinternalmodelsinlargebanks IntroductiontoRiskmetricsmodel InternalmodelofJ P Morgan 1994 NormaldistributionisassumedformarketchangeOne dayholdingperiod95 confidencelevelBenchmarkofmarketriskmanagement DennisWeatherstone sOrder Atcloseofbusinesseachdaytellmewhatthemarketrisksareacrossallbusinessesandlocations Inanutshell thechairmanofJ P Morganwantsasingledollarnumberat4 15pmNewYorktimethattellshimJ P Morgan smarketriskexposurethenextday especiallyifthatdayturnsouttobea bad day TherequiresingledollarnumberisDailyEarningsatRisk DEAR ordailyVaR Anontrivialjob ForeignFixedExchangeEmergencyincomeSTRIT CommoditiesDerivativesEquitiesMarketsProprietaryTotalNumberofactivelocations1412511871114Numberofindependentrisk takingunits3021816141119120ThousandsofTransactionsPerday 5 5520BillionsofdollarsindailyTradingvolume 10 301150 Basicmethodologyandprocess CalculatingDEARfiguresforeachofthebusinesslines riskfactors StandaloneriskFixed incomesecuritiesFXEquity PortfolioAggregation PortfolioRiskDifferenttradingpositionsaggregatedDifferentriskfactorsaggregatedCorrelationeffectconsidered CalculatingVaRforanaiveinvestmentportfolioofanFI SupposeanFIhasfollowinginvestmentpositions 1 a 1millionmarketvaluepositionin7 yearzero couponbonds 2 Swf1 6millioninspotSwissfrancs FXrateisWsf1 60 atthedailyclose 3 1milliontradingpositioninstocksthatreflectaU S stockmarketindex WhatistheDEAR VaR 95 confidencelevel Fixed incomesecurities Suppose 1 TheFIhasa 1millionmarketvaluepositionin7 yearzero couponbonds 2 Today syieldonthesebondsis7 243 ThenS MD D 1 R 7 1 7 243 6 527 3 Thedailychangeofyieldisnormallydistributedanditsvolatility is10bpsDEAR P S DR 95 CL 1million 6 527 1 65 10bpc 95 CL 1million 1 077 95 CL 10 770 95 CL Pricevolatility MD Potentialadversechangeinyield 6 527 0 00165 1 077 DEAR Marketvalueofposition Pricevolatility 1 000 000 01077 10 770 FromDEARtomore than one dayVaR Tocalculatethepotentiallossformorethanoneday N dayVAR DEAR NExample Forafive dayperiod VAR 10 770 5 24 082 FX InthecaseofForeignExchange DEARiscomputedinthesamefashionweemployedforinterestraterisk DEAR P S DR 95 CLDEAR Dollarvalueofposition Pricevolatility Suppose 1 theFIhadaSwf1 6millioninspotSwissfrancs FXrateisWsf1 60 atthedailyclose ThismeansP 1million 2 ChangesoftheFXratearenormallydistributedandthehistoricalvolatility ofdailychangesinthespotFXrateis56 5bps DEAR P S DR 95 CL 1million 1 1 65 56 5bps 95 CL 1million 93 2bps 95 CL 9 320 95 CL Equities Accordingtomodernportfoliotheory therearetwotypesofrisktoanequitypositioninanindividualstock Totalrisk Systematicrisk UnsystematicriskU riskcanbelargelydiversifiedawayinaverywell diversifiedportfolio S riskreflectsthecomovementofthatstockwiththemarketportfolio forwhichthestockmarketindexcanbeaproxy ThesensitivityofastocktothemarketportfolioisgivenbyCAPMmodel E ri rf i E rM rf i iM M2 Forawell diversifiedstockportfolio DEAR P S DR 95 CL wherethemarketreturnvolatilityistakenas1 65sM P DIndex 95 CLDEAR Dollarvalueofposition Pricevolatility Iftheportfolioreplicatesthestockmarketindex 1 Inlesswelldiversifiedportfolio theeffectofU riskshouldbeconsidered IfCAPMmodeldoesnotofferagoodexplanationofassetpricingcomparedto say multi indexAPTmodel adegreeoferrorshouldbebuiltintoDEARcalculation Suppose 1 TheFIholdsa 1milliontradingpositioninstocksthatreflectaU S stockmarketindex Then 1 2 Thedailyreturn changeofvalue onthestockmarketindexisnormallydistributedanditsvolatilityis2 DEAR P DR 95 CL 1million 1 1 65 2 95 CL 1million 3 3 95 CL 33 000 95 CL PortfolioAggregation individualDEARsoftheFI BondDEAR 10 770 95 CLFXDEAR 9 320 95 CLSUM 53 090EquityDEAR 33 000 95 CLSimplysummingupindividualDEARsdoesnotcomplywithmodernportfoliomanagementtheoryforcorrelationanddiversificationeffectisnottakenintoaccount InordertoaggregatetheDEARsfromindividualexposureswerequirethecorrelationmatrix Three assetcase DEARportfolio DEARa2 DEARb2 DEARc2 2rab DEARa DEARb 2rac DEARa DEARc 2rbc DEARb DEARc 1 2 correlationmatrix r Seven YearZeroSwf 1U SStockIndexSeven yearzero 2 4Swf 1 1U Sstockindex AggregatingindividualDEARintoportfolioDEAR DEARportfolio DEARz 2 DEARswf 2 DEARu s 21 2 2Xrz SwfXDEARzXDEARswf 2Xrz U S XDEARzXDEARU S 2XrU S SwfXDEARU SXDearswf DEARportfolio 10 77 2 9 32 2 33 2 2 2 10 77 9 32 2 4 10 77 33 2 1 9 32 33 39 969 53 090Portfolioeffect 53 090 39 969 13 121 PortfolioDEARSpreadsheet InterestRateRiskNotionalAmounts U S millionsequivalents FXRiskTotal112345710interestSpotFXPortfolioTotalmonthyearYearsYearsyearsyearsyearsyearsDEARFXDEARAustraliaAUDBelgiumBEFCanadaCADDenmarkDKKFrance19 301148FFR48Germany 1930 1127DEM27ItalyLIRJapanYENNetherlandsNLGSpainESBSwedenSEKSwitzerlandGBPUnitedKingdomGBPUnitedStates101076USD76Total1010151151Portfolioeffect 62 62 RISKDATAPRINTCLOSETotalDEAR 000S 8989 CriticismsandshortcomingsofRiskmetrics Assumptionofasymmetricnormaldistributionforallassetreturns Forsomeassets suchasoptionsandshort termsecurities bonds thisishighlyquestionable Limitationofnormalmarketconditionandsupplementarystresstestingorscenarioanalysis BISregulationonVaR basedinternalmodelsinlargebanks IncalculatingDEAR adversechangeinratesdefinedas99thpercentile ratherthan95thunderRiskMetrics Minimumholdingperiodis10days meansthatRiskMetrics dailyDEARmultipliedby 10 Capitalchargewillbethehigherof Previousday sVAR orDEAR 10 AverageDailyVARoverprevious60daystimesamultiplicationfactor 3 Subjecttoback testing 3 4HistoricorBackSimulation AdvantagesBasicideaProcessofHistoricSimulationWeaknesses Advantages SimplicityDoesnotrequirenormaldistributionofreturns whichisacriticalassumptionforRiskMetrics Doesnotneedcorrelationsorstandarddeviationsofindividualassetreturns Basicidea Revalueportfoliobasedonactualprices returns ontheassetsthatexistedyesterday thedaybefore etc usuallyprevious500days Thencalculate5 worst case 25thlowestvalueof500days outcomes Only5 oftheoutcomeswerelower ProcessofHistoricSimulation Converttoday sFXpositionsintodollarequivalentsattoday sFXrates MeasuresensitivityofeachpositionCalculateitsdelta MeasureriskActualpercentagechangesinFXratesforeachofpast500days Rankdaysbyriskfromworsttobest Examples Example1 TextbookPage244 246Example2 Page257 QuestionsandProblemsNO 16 Weaknesses Basicassumption therecentpastdistributionofexchangeratesisanaccuratereflectionofthelikelydistributionofFXratechangesinthefuture thatexchangeratechangeshavea stationary distribution Disadvantage 500observationsisnotverymanyfromstatisticalstandpoint Increasingnumberofobservationsbygoingbackfurtherintimeisnotdesirable Couldweightrecentobservationsmoreheavilyandgofurtherback 3 5MonteCarloSimulation Toovercomeproblemoflimitednumberofobservations synthesizeadditionalobservations Perhaps10 000realandsyntheticobservations Employhistoriccovariancematrixandrandomnumbergeneratortosynthesizeobservations Objectiveistoreplicatethedistributionofobservedoutcomeswithsyntheticdata 3 6RegulatoryModels BIS includingFederalReserve approach MarketriskmaybecalculatedusingstandardizedBISmodel Specificriskcharge Generalmarketriskcharge Offsets Subjecttoregulatorypermission largebanksmaybeallowedtousetheirinternalmodelsasthebasisfordeterminingcapitalrequirements BISStandardizedModel Specificriskcharge Riskweights absolutedollarvaluesoflongandshortpositionsGeneralmarketriskcharge reflectmodifieddurations expectedinterestrateshocksforeachmaturityVerticaloffsets AdjustforbasisriskHorizontaloffsetswithin betweentimezones Terms ValueatRisk Va
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨境电商零售进口市场规模预测与产业转型升级报告
- 离婚协议书简易版(含子女抚养及共同债务)
- 离婚财产分割协议中关于共同人寿保险权益的转移合同
- 万科商铺租赁合同范本-高端商业租赁管理协议
- 物业财务管理合同合规审查与财务风险控制协议
- 婚姻解除后共同财产清算及分配执行协议
- 加油站专栏营销方案范文
- 离婚协议书:房产分割及子女抚养权、赡养费协议
- 离婚协议签订时双方子女教育经费分担合同
- 鞍山管理咨询收费方案
- GB/T 11110-1989铝及铝合金阳极氧化阳极氧化膜的封孔质量的测定方法导纳法
- 实用警务英语 洛克比空难
- 三年级上册美术课件-我的自画像册1-岭南版
- Be-Safe-on-the-Way课件(省一等奖)
- 现代设计方法(修改)课件
- 苏教版四年级下册科学知识点全册
- 儿童口腔保健及不良习惯课件
- 软件系统运维方案
- TDTG提升机说明书
- 管线打开作业工作安全分析(JSA)记录表
- 污水处理池 (有限空间)作业安全告知牌及警示标志
评论
0/150
提交评论