风险回报与资本成本论述(英文版)(ppt 75页).ppt_第1页
风险回报与资本成本论述(英文版)(ppt 75页).ppt_第2页
风险回报与资本成本论述(英文版)(ppt 75页).ppt_第3页
风险回报与资本成本论述(英文版)(ppt 75页).ppt_第4页
风险回报与资本成本论述(英文版)(ppt 75页).ppt_第5页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Return Risk andtheSecurityMarketLine TypesofReturnsExpectedReturnsandVariancesPortfoliosAnnouncements Surprises andExpectedReturnsRisk SystematicandUnsystematicDiversificationandPortfolioRiskSystematicRiskandBetaTheSecurityMarketLineTheSMLandtheCostofCapitalSummaryandConclusions TypesofReturns TotalMonetaryreturn DividendIncome CapitalGainEganinvestmentof 1000risesinvalueto 1500providingacapitalgainof 500 Overthesameperiodthedividendincomeis5 50 Totalreturnisthen 500 50 550 Totalmonetaryreturnisanabsolutemeasureofreturns Ittellsyouhowmuchmoneyyouhavemadein s ItisoftenmoreusefultoknowthePercentageReturn ThePercentageReturnisthetotalmonetaryreturndividedbytheamountofcapitalinvested PercentageReturn Dividends CapitalGainsamountinvestedOrRit Dit Pit Pit 1 Div Yield capitalgainPit 1 ExpectedReturnsandVariances BasicIdeas Thequantificationofriskandreturnisacrucialaspectofmodernfinance Itisnotpossibletomake good i e value maximizing financialdecisionsunlessoneunderstandstherelationshipbetweenriskandreturn Rationalinvestorslikereturnsanddislikerisk Considerthefollowingproxiesforreturnandrisk Expectedreturn weightedaverageofthedistributionofpossiblereturnsinthefuture Varianceofreturns ameasureofthedispersionofthedistributionofpossiblereturnsinthefuture Howdowecalculatethesemeasures CalculatingtheExpectedReturn Example1 sE R pixRi i 1piRiProbabilityReturninipixRiStateofEconomyofstateistatei 1 changeinGNP 25 5 i 1 1 25 2 changeinGNP 5015 i 27 5 3 changeinGNP 2535 i 38 75 Expectedreturn 1 25 7 50 8 75 15 CalculatingtheVariance Example1ofCalculatingtheexpectedreturn Var R i Ri E R 2pix Ri E R 2i 1 0 05 0 15 2 0 040 25 0 04 0 01i 2 0 15 0 15 2 00 5 0 0i 3 0 35 0 15 2 0 040 25 0 04 0 01Var R 02Whatisthestandarddeviation ExpectedReturnsandVariancesExample2 StateoftheProbabilityReturnonReturnoneconomyofstateassetAassetBBoom0 4030 5 Bust0 60 10 25 1 00A ExpectedreturnsE RA 0 40 x 30 0 60 x 10 06 6 E RB 0 40 x 05 0 60 x 25 13 13 Example ExpectedReturnsandVariances concluded B VariancesVar RA 0 40 x 30 06 2 0 60 x 10 06 2 0384Var RB 0 40 x 05 13 2 0 60 x 25 13 2 0216C StandarddeviationsSD RA 0384 196 19 6 SD RB 0216 147 14 7 CalculatingExpectedReturnsandVarianceinpractice Themostcommonmethodistouseatimeseriesofreturnscalculatedfrompastpricesanddividends CalculatingExpectedReturnsandVarianceinpractice 2 E Ri isassumedtobeequaltothesampleaveragereturn 0 0116 0 0046 0 0092 0 0136 0 0 0345 6 0 00378Tocalculatethevariancewecalculatethedeviationforeachday sreturnfromtheexpectedreturn squaretomakeitpositiveandthendividebyn 1 Inthiscasen 6 CalculatingExpectedReturnsandVarianceinpractice 3 Measuringrisk Ifweweretoplotthedailyreturnsonasecurityoveralongperiodthenitmightlooksomethinglikeanormaldistribution picturenextslide Whatwewanttodoistosummarisethispictureassimplyaspossible Themeanistheexpectedreturn thespreadorvariationisthestandarddeviationorvariance WearguethatthisspreadrepresentsrisktoinvestorsandhencethattheSt Dev orvarianceisameasureoftheriskofashare Infactreturndistributionsdon tusuallylookexactlylikethis Theytendtohaveatruncatedlefttailandalongerrighttail Variancemaynotbethebestmeasureofrisk Describingadistribution PortfolioExpectedReturnsandVariances Whatwehavedonesofarisdescribetheriskandreturnofindividualsecurities Wealsowanttobeabletodescribetheriskandreturnofportfoliosofsecurities Wehavetwoequivalentalternativesopentous Component Wecandeterminethereturnandriskoftheportfoliobycombiningthereturnsandrisksofthesecuritiesthatmakeuptheportfolio Security Wecantreattheportfolioasjustanothersecurityandcalculateitsreturnandriskaswehavebeendoing Bothoftheseapproachesgivethesameanswerbutthefirstallowsustoseehowindividualsecuritiesaffectthereturnandriskofaportfolio PortfolioExpectedReturnsandVariances usingreturnsfromExample2 Portfolioweights put50 inAssetAand50 inAssetB StateoftheProbabilityReturnReturnReturnoneconomyofstateonAonBportfolioBoom0 4030 5 12 5 Bust0 60 10 25 7 5 1 00 Example PortfolioExpectedReturnsandVariances continued Calculateexpectedreturns SecurityapproachE RP 0 40 x 125 0 60 x 075 095 9 5 ComponentapproachE RP 50 xE RA 50 xE RB 9 5 Calculatevarianceofportfolio SecurityapproachVar RP 0 40 x 125 095 2 0 60 x 075 095 2 0006PortfolioapproachThesumofthevariancesisnotthevarianceoftheportfolioVar RP 50 xVar RA 50 xVar RB Ftthisweek Olympus sagacontinues resignationofPresident openletterbymajorshareholder questions atlast byJapanesePressandGovernment Eurozone thedeal moreofthesame bigger voluntary haircuts moreausteritybutthedebtorstrikesback Greekreferendum MFGlobalcollapse broker dealersufferingfromeurozoneratingsdowngrades 6 3bnexposure Managementgreed hugeincreaseinseniormanagementpayoverlastyear TheStorysofar Ouraimistorelatereturntorisk Basicprincipleisthatinvestorsrequirearewardfortakingonrisk Thelargertherisk thelargerthereward Buthowarewetomeasureriskandreturn Manydifferenttypesofrisk Weconcentrateonriskasperceivedbythecapitalmarkets Thepriceofashareatanytimereflectseverythingthatisknownaboutthecompany Suggeststhatwecanusepricechangestoprovideinformationaboutthecompany Byexaminingthedistributionofpercentagepricechanges returns wecandeterminethelikelyorexpectedreturn andthedispersionofreturnsthatmightoccur Thestorysofar 2 Anobviousmeasureofexpectedreturnisthearithmeticmean Ameasureofdispersionisthevariance Thisisusedasameasureoftheriskofashare Thevarianceisareasonablemeasureifthedistributionofreturnsissymmetric Mostcompaniesarenotheldinisolationbutareheldaspartofaportfolio Weusetwoshareportfoliostodemonstratehowriskchanges TheproportionofeachcompanyintheportfolioisknownastheportfolioWeight Ourinterestisinhowonecompanyrelatestoanother Weareconcernedaboutthejointdistributionofreturns JointDistributionofreturns probabilityReturnonSecurityXReturnonSecurityY CovarianceandCorrelation TheCovarianceisameasureofhowthetwosecuritiesarerelated SimilartoVariancebutusescrossdeviations Variance E RAt E RAt RAt E RAt Covariance average deviationofreturnonAfromitsmean deviationofreturnonBfromitsmean CAB E RAt E RAt RBt E RBt CorrelationisastandardisedCovariance CorrelationbetweenAandBistheCovariancebetweenAandBdividedbythestandarddeviationofAtimesthestandarddeviationofB AB CovAB A B CovarianceandCorrelation Theriskofaportfolioiscomprisedoftheriskoftheindividualsecuritiesplusthecorrelationbetweenthem Iftherearetwosecuritiesthentheriskoftheportfoliocanbecalculatedfromthevarianceofeachsecurityplusthecorrelationbetweenthem Fortwosecuritieswehave p2 X12Var1 X22Var2 2X1X2Cov12Remember Cov12 1 2 12 p2 X12 12 X22 22 2X1X2 1 2 12Cov12 E R1t E R1t R2t E R2t E R2t E R2t R1t E R1t Cov21 TwosecurityPortfolioSelectionExample Rpt X1R1t X2R2tE Rpt E X1R1t X2R2t X1E R1t X2E R2t p2 E Rpt E Rpt 2 p2 E X1R1t X2R2t X1E R1t X2E R2t 2 p2 E X1 R1t E R1t X2 R2t E R2t 2Fromalgebraweknowthat a b 2 a2 b2 2ab p2 X12E R1t E R1t 2 X22E R2t E R2t 2 2X1X2E R1t E R1t R2t E R2t X12 12 X22 22 2X1X2Cov12 HowCorrelationaffectsrisk 2securityexample HowCorrelationaffectsrisk 2securityexample HowCorrelationaffectsrisk 2securityexample TheEffectofcorrelationonPortfolioVariance StockAreturns 0 050 040 030 020 010 0 01 0 02 0 03 0 04 0 05 0 050 040 030 020 010 0 01 0 02 0 03 StockBreturns 0 040 030 020 010 0 01 0 02 0 03 Portfolioreturns 50 Aand50 B CovarianceandCorrelation morethan2securities Onewayofthinkingofthecovarianceofsecuritieswithinaportfolioistovisualiseamatrixofsecurities Eachsecuritymustpairwitheachother Ifthenumbersarethesameitisavariance otherwiseacovariance egiftherearefivesecuritieswecanthinkof ComponentsofPortfolioRisk VarianceCovarianceExpression CovarianceandCorrelation cont Impactofcorrelation covariance StandardDeviationsofAnnualPortfolioReturns 3 2 RatioofPortfolio 1 AverageStandardStandardDeviationtoNumberofStocksDeviationofAnnualStandardDeviationinPortfolioPortfolioReturns ofaSingleStock149 241 001023 930 495020 200 4110019 690 4030019 340 3950019 270 391 00019 210 39FiguresfromTable1inMeirStatman HowManyStocksMakeaDiversifiedPortfolio JournalofFinancialandQuantitativeAnalysis22 September1987 pp 353 64 andderivedfromE J EltonandM J Gruber RiskReductionandPortfolioSize AnAnalyticSolution JournalofBusiness50 October1977 pp 415 37 PortfolioDiversification Averageannualstandarddeviation Numberofstocksinportfolio Diversifiablerisk Nondiversifiablerisk 49 2 23 9 19 2 1 10 20 30 40 1000 Diversification analyticalsolution Diversification analyticalsolution 2 Diversification analyticalsolution 3 Ifweweretolookatthecasewherecovariancesarenotequaltozerowewouldfindthattheriskofalargeportfolioofstocksisapproximatelyequaltotheaveragecovariancebetweenallthestocks P2 CovAV PeterBernsteinonRiskandDiversification Bigrisksarescarywhenyoucannotdiversifythem especiallywhentheyareexpensivetounload eventhewealthiestfamilieshesitatebeforedecidingwhichhousetobuy Bigrisksarenotscarytoinvestorswhocandiversifythem bigrisksareinteresting Nosinglelosswillmakeanyonegobroke bymakingdiversificationeasyandinexpensive financialmarketsenhancethelevelofrisk takinginsociety PeterBernstein inhisbook CapitalIdeas Howcorrelationaffectsrisk TheEfficientFrontier FTthisweek Olympus admitswrongdoing Eurozone manyinterestingarticleshighlightingthe power ofGreece Germanroleandinterest dangerstoItalyandothers Focusononearticle RobertJenkins Insight nov 8 Greekrestructuring exitfromtheeurozoneGreekgovtdecidesonexit Greekcitizensandcompanieswithdraweurodepositswhilsttheyarestilleuros Foreignlendersstoplendingandrecallloansasquicklyaspossible Govt announcesanewdrachma Capitalcontrolsareintroduced Govtdebtisredenominatedindrachma Olympusshareprice FTthisweek cont Greekrestructuring Valueofthedrachmaplunges Greekinflationsoars Disputesoverprivatesectordebt Aretheyindrachmaoreuros Ifdrachmathenforeignbankshaveaproblem assetvalueshavefallen IfineurosthenGreekborrowershaveaproblemContagioncommences Portugesecitizensthinkitmighthappentothemandmoveouteurosfromthebanks Similarmovesinseveralothercountries Europeanbanksindifficultiesbecauseofexposuretoeurodebtofvariouscountrieswithlikelydifficulties Counterpartyriskmeansmarketinbankloansdriesup Banklendinghalts BankscollapseunlessGovtrescuethem TheStorytodate TheriskofaportfoliodependsontheCovarianceorCorrelationbetweenassets Varianceisimportantforanindividualassetbutbecomeslessandlessimportantasaportfolioincludesmoreandmorestocks Theriskofaportfoliodependsontheaveragecovariancebetweenstocks Therelationshipbetweenriskandreturncanberepresentedgraphicallybyaquadraticfrontier ThebestcombinationsofriskandreturnareontheEfficientFrontier Theshapeofthefrontierarisesfromthecovariancebetweenassets HowCorrelationaffectsrisk ariskfreeasset HowCorrelationaffectsrisk ariskfreeasset 2 Tobin sSeparationTheorem SimplifyingourRiskMeasure Ourmessagesofarhasbeenthatwhenweaddsecuritiestogetherriskisaffectedbythecorrelation covariance betweenthem Becausesecuritiesarelessthanperfectlycorrelated riskisreduced Whilstthisisusefulasaconceptitisoperationallyverydifficulttouse Thenumberofcorrelationsthatweneedtoconsidertoconstructoptimalportfoliosusingthissortofapproachisverylarge Weneedtofindsomeothermeasureofriskthatwillenableustosimplifytheproblem Onesuchmeasureisthebetaofasecurityorportfolio Thebetaofasecuritycanbethoughtofas the standardised sumofthesecurity scovariancewithallsecuritiesSinceallsecuritiesisjustanotherwayofsayingthemarket thebetaofasecurityis the standardised covarianceofthesecuritywiththemarket EstimatingBeta Betaisusuallyestimatedusinglinearregression BetaisanoutputfromtheMarketModel Thisassumesthatthereisalinearrelationshipbetweenthereturnonthemarketandthereturnonashare Returnsonashareareregressedagainstreturnsonamarketindex Rit ai biRmtcitaiisthealphaofshareIbiisthebetaofshareI BetaCoefficientsforSelectedCompanies Table10 7 BetaCompanyCoefficient i Alcatel Lucent1 44L Oreal0 45SAP0 56Siemens1 51Daimler1 25PhilipsElectron0 92Renault1 64Volkswagen0 40 Source Hillier Ross Westerfield Jaffe Jordan CorporateFinance PortfolioBetaCalculations PortfolioBetahasaverydesirablecharacteristic Itisthe weighted averageoftheindividualbetas AmountPortfolioStockInvestedWeightsBeta 1 2 3 4 3 x 4 HaskellMfg 6 00050 0 900 450Cleaver Inc 4 00033 1 100 367RutherfordCo 2 00017 1 300 217Portfolio 12 000100 1 034 Cash risklessasset PortfolioExpectedReturnsandBetas AssumeyouwishtoholdaportfolioconsistingofariskyassetAandcash arisklessasset Giventhefollowinginformation calculateportfolioexpectedreturnsandportfoliobetas lettingtheproportionoffundsinvestedinassetArangefrom0to125 AssetAhasabeta of1 2andanexpectedreturnof18 ThereturnoncashattheCentralBank risk freerate is7 AssetAweights 0 25 50 75 100 and125 Cash risklessasset PortfolioExpectedReturnsandBetas ProportionProportionPortfolioInvestedinInvestedinExpectedPortfolioAssetA Risk freeAsset Return Beta01007 000 0025759 750 30505012 500 60752515 250 90100018 001 20125 2520 751 50Plotthisandmeasuretheslope 18 07 1 2 0 092 Thisistheriskpremiumperunitofsystematicrisk Cash risklessasset PortfolioExpectedReturnsandBetas Expectedreturn18 7 01 2betaSlope 18 07 1 2 092 Return Risk andEquilibrium Keyissues Whatistherelationshipbetweenriskandreturn Whatdoessecuritymarketequilibriumlooklike Thefundamentalconclusionisthattheratiooftheriskpremiumtobetaisthesameforeveryasset Inotherwords thereward to riskratioisconstantandequaltoE Ri Rfslope Reward riskratio i Return Risk andEquilibrium concluded Example AssetAhasanexpectedreturnof12 andabetaof1 40 AssetBhasanexpectedreturnof8 andabetaof0 80 Aretheseassetsvaluedcorrectlyrelativetoeachotheriftherisk freerateis5 a ForA 12 05 1 40 b ForB 08 05 0 80 Whatwouldtherisk freeratehavetobefortheseassetstobecorrectlyvalued 12 Rf 1 40 08 Rf 0 80Rf TheCapitalAssetPricingModel TheCapitalAssetPricingModel CAPM anequilibriummodeloftherelationshipbetweenriskandreturn Whatdeterminesanasset sexpectedreturn Therisk freerate thepuretimevalueofmoneyThemarketriskpremium therewardforbearingsystematicriskThebetacoefficient ameasureoftheamountofsystematicriskpresentinaparticularassetTheCAPM E Ri Rf E RM Rf xi CapitalAssetPricingModel 2 Expectedreturnonassetiisalinearfunctionoftheriskfreerateandtheassetsmarginalrisk beta timestheexpectedriskpremiumonthemarket E Ri Rf E Rm Rf i iisthebetaofasecurity Itisderivedfromthemarketmodelandrepresentsthemarginalriskofanasset Theinvestorisassumedtoberational Assuchtheinvestorwillknowthatbyholdingadiversifiedportfolioofassetss hecangetridofalltheunsystematicrisk Theinvestorcan thowever getridofthesystematicormarketrisk Inconsequencetobearmarketrisktheinvestordemandscompensationrelatedtotheamountofmarketrisk Allassetreturnsarerelatedtotheirrisk InequilibriumallassetswillplotonthestraightlinegivenrepresentingtheCAPM ThestraightlineisknownastheSecurityMarketLine TheCapitalAssetPricingModel assumptions 3 InvestorsselectefficientportfoliosInvestorshavethesamedecisionhorizonandoverthisperiodmeansandvariancesexist CapitalMarketsareperfect Assetsinfinitelydivisible notransactioncosts informationiscostlessandavailabletoallNotaxesIndividualscanborrowasmuchoraslittleastheywishatthesameborrowingandlendingrateRfHomogeneousExpectationsandPortfolioOpportunities TheSecurityMarketLine SML Assetexpectedreturn E Ri Assetbeta i E RM Rf E RM Rf M 1 0 TheCostofCapital Issues Keyissues Whatdowemeanby costofcapital Howcanwecomeupwithanestimate Preliminaries1 Vocabulary thefollowingallmeanthesamething a Requiredreturnb Appropriatediscountratec Costofcapital orcostofmoney 2 Thecostofcapitalisanopportunitycost itdependsonwherethemoneygoes notwhereitcomesfrom 3 Fornow assumethefirm scapitalstructure mixofdebtandequity isfixed TheWeightedAverageCostofCapital Capitalstructureweights1 Let E themarketvalueoftheequity D themarketvalueofthedebt Then V E D soE V D V 100 2 Sothefirm scapitalstructureweightsareE VandD V 3 Interestpaymentsondebtaretax deductible sotheaftertaxcostofdebtisthepretaxcostmultipliedby 1 corporatetaxrate Aftertaxcostofdebt RDx 4 ThustheweightedaveragecostofcapitalisWACC E V xRE D V xRDx 1 Tc Example EastmanChemical sWACC EastmanChemicalhas80millionsharesofcommonstockoutstanding Thebookvalueis 19 10andthemarketpriceis 62 375pershare T billsyield5 andthemarketriskpremiumisassumedtobe8 5 Thestockbetais1 1 Thefirmhasthreedebtissuesoutstanding CouponBookValueMarketValueYield to Maturity6 375 499m 521m5 70 7 250 495m 543m6 50 7 625 200m 226m6 60 Example EastmanChemical sWACC concluded Costofequity SMLapproach RE 05 1 1x 085 05 0935 1435 14 4 Costofdebt Multiplytheproportionoftotaldebtrepresentedbyeachissuebyitsyieldtomaturity theweightedaveragecostofdebt 6 2 Capitalstructureweights Marketvalueofequity 80millionx 62 375 4990mMarketvalueofdebt 521m 543m 226m 1290mV 4990m 1290m 6280mD V 1 29 6 28 2054 21 E V 4 99 6 28 7946 79 WACC 79x 144 21x 062x 65 1222 12 2 Example TheSMLApproach AccordingtotheCAPM RE Rf Ex RM Rf 1 Gettherisk freeratefromfinancialpress manyusethe1 yearTreasurybillrate say6 2 Getestimatesofmarketriskpremiumandsecuritybeta a Riskpremiumhistorical b Beta historical 1 Investmentinformationservices e g Bloomberg 2 Estimatefromhistoricaldata3 Supposethebetais1 40 then usingtheapproach RE Rf Ex RM Rf 0 06 1 40 x CostsofDebt Costofdebt1 Thecostofdebt RD istheinterestrateonnewborrowing 2 Thecostofdebtisobservable a Yieldoncurrentlyoutstandingdebt b Yieldsonnewly issuedsimilarly ratedbonds 3 Thehistoricdebtcostisirrelevant why Example Wesolda20 year 12 bond10yearsagoatpar Itiscurrentlypricedat86 Whatisourcostofdebt Theyieldtomaturityis sothisiswhatweuseasthecostofdebt not12 SummaryofCapitalCostCalculations TheWeightedAverageCostofCapitalA TheWACCistherequiredreturnonthefirmasawhole Itistheappropriatediscountrateforcashflowssimilarinrisktothefirm B TheWACCiscalculatedasWACC E V xRE D V xRDx 1 Tc whereTcisthecorporatetaxrate Eisthemarketvalueofthefirm sequity Disthemarketvalueofthefirm sdebt andV E D TheSecurityMarketLineandtheWeightedAverageCostofCapital Expectedreturn Beta SML WACC 15 8 Incorrectacceptance Incorrectrejection B A 161514 Rf 7 A 60 firm 1 0 B 1 2 IfafirmusesitsWACCtomakeaccept rejectdecisionsforalltypesofprojects itwillhaveatendencyt

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论