




已阅读5页,还剩83页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 测量不确定度评定与表示 一 发展历史二 基本概念三 评定步骤四 实例分析 一 测量不确定度的发展历史 2 1927年德国物理学家海森堡提出测不准关系 也称不确定度关系 1953年Y Beers在 误差理论导引 一书中给出实验不确定度 1970年C F Dietrich出版了 不确定度 校准和概率 1973年英国国家物理实验室的J E Burns等指出 当讨论测量准确度时 宜用不确定度 1978年国际计量局发出不确定度征求意见书 征求各国和国际组织的意见 3 1980年 BIPM召集和成立了不确定度表述工作组 在征求各国意见的基础上起草了一份建议书 INC 1 1980 该建议书向各国推荐了测量不确定度的表述原则 自此 得到了国际初步统一的测量不确定度的表示方法 1986年CIPM要求国际标准化组织 ISO 能在INC 1 1980 建议书的基础上起草一份能广泛应用的指导性文件 该项工作得到了7个国际组织的支持和倡议 该7个国际组织是 ISO 国际标准化组织 IEC 国际电工委员会 CIPM 国际计量委员会 OIML 国际法制计量组织 IFCC 国际临床化学联合会 IUPAC 国际纯化学和应用化学联合会 IUPAP 国际纯物理和应用物理联合会 测量不确定度的发展历史 4 1993年由国际标准化组织 ISO 的第四技术顾问组 TAG4 第三工作组 WG3 经过工作近7年的努力 完成了 测量不确定度表示导则 的第一版 并以7个国际组织的名义联合发布 由ISO正式出版发行 1995年在对 测量不确定度表示导则 1993e 作了一些更正后重新印刷 该指导性文件已经使用了20多年 目前为止它仍然是有效版本 测量不确定度的发展历史 1986年组成国际不确定度工作组 负责制定用于计量 生产 科学研究中的不确定度指南 1993年出版了 测量不确定度表示指南 GuidetotheExpressionofUncertaintyinMeasurement 简称GUM 1999年国家质量技术监督局批准发布了JJF1059 1999 测量不确定度评定与表示 这规范原则上等同采用了GUM的基本内容 1999年中国人民解放军总装备部批准发布了GJB3756 99 测量不确定度的表示及评定 5 中国量值溯源性体系原理图 社会公用计量基准 省级 社会公用计量基准 市级 社会公用计量基准 县级 国家计量基准 副计量基准 工作计量基准 企业 事业单位最高计量标准 企业 事业单位计量标准 工作计量器具 企业 事业 市场等 部门最高计量标准 部门计量标准 社会公用计量标准 国家专业计量站 社会公用计量标准 专业计量分站 6 计量器具量值溯源的比较链 通过一条具有规定不确定度的不间断的比较链 使测量结果或测量标准的值能够与国家计量基准或国际计量基准联系起来 称为量值溯源 建立量值溯源体系的目的 是保证量值得到准确 合理 经济的溯源 尽可能减少所进行的测量溯源到国家计量基准的环节 校准和检定是实现量值溯源的最主要的技术手段 计量器具量值溯源 返回首页 7 二 基本概念 1 什么叫测量不确定度 国家计量技术规范 JJF1059 2012 测量不确定度评定与表示 中定义是 表征合理地赋予被测量之值的分散性 与测量结果相联系的参数 注1 此参数可以是诸如标准偏差 或其倍数 或说明了置信水平的区间的半宽度 8 测量不确定度 注2 测量不确定度由多个分量组成 其中一些分量可用测量列结果的统计分析估算 并用实验标准偏差表征 另一些分量则可用基于经验或其它信息的假定概率分布估算 也可用标准偏差表征 注3 测量结果应理解为被测量之值的最佳估计 而所有的不确定度分量均贡献给了分散性 包括那些由系统效应引起的 如与修正值和参考标准有关的 分量 9 测量不确定度 在不确定度的定义中的 被测量之值 理解为 测得值 测得值 有时也称为 观测值 是指从一次观测中由测量仪器或量具的显示装置中所得到的单一值 一般地说 它并不是测量结果 10 2 表征合理地赋予被测量之值的分散性 与测量结果相联系的参数 合理 意指应考虑到各种因素对测量的影响所做的修正 特别是测量应处于统计控制的状态下 即处于随机控制过程中 相联系 意指测量不确定度是一个与测量结果 在一起 的参数 在测量结果的完整表示中应包括测量不确定度 此参数可以是诸如标准 偏 差或其倍数 或说明了置信水准的区间的半宽度 测量不确定度是表征合理地赋予 被测量之值 的分散性 因此 不确定度表示一个区间 即 被测量之值 可能分布区间 这是测量不确定度与误差的最根本的区别 11 测量结果与测量不确定度 测量不确定度从词意上理解 意味着对测量结果可信性 有效性的怀疑程度或不肯定程度 是定量说明测量结果的质量的一个参数 实际上由于测量不完善和人们的认识不足 所得的被测量值具有分散性 即每次测得的结果不是同一值 而是以一定的概率分散在某个区域内的许多个值 虽然客观存在的系统误差是一个不变值 但由于我们不能完全认知或掌握 只能认为它是以某种概率分布存在于某个区域内 而这种概率分布本身也具有分散性 测量不确定度就是说明被测量之值分散性的参数 它不说明测量结果是否接近真值 为了表征这种分散性 测量不确定度用标准 偏 差表示 在实际使用中 往往希望知道测量结果的置信区间 因此规定测量不确定度也可用标准 偏 差的倍数或说明了置信水准的区间的半宽度表示 为了区分这两种不同的表示方法 分别称它们为标准不确定度和扩展不确定度 12 测量结果与测量不确定度 例如 用一台电压表测量某一电压 且电压表读数不加修正值 若对于该测量点电压表的最大允许误差为V 用该电压表进行了20次重复测量 则该20个读数的平均值就是测量结果 还可以由它们得到测量结果的分散性 测量结果示意 测量结果均值 不确定度示意 14 3 什么叫测量误差 测量误差 简称为误差 的定义为 测量结果减去被测量的真值 误差应该是一个确定的值 是客观存在的测量结果与真值之间差 但由于真值往往不知道 故误差无法准确得到 15 误差 虽然误差的概念早已出现 但在用传统方法对测量结果进行误差评定时 还存在一些问题 简单地说 大体上遇到两个方面的问题 逻辑概念上的问题和评定方法的问题 16 误差 我们把被测量在观测时所具有的大小称为真值 因而只是一个理想的概念 只有通过完善的测量才有可能得到真值 但是任何测量都会存在缺陷 因而真正完善的测量是不存在的 也就是说 严格意义上的真值是无法得到的 17 误差 根据误差的定义 要得到误差就必须知道真值 但真值由无法得到 因此 严格意义上的误差也是无法得到的 由于真值无法知道 在实际上误差的概念只能用于已知约定真值的情况下 18 误差 根据误差的定义 误差是一个差值 它是测量结果与真值或约定真值之差 在数轴上它表示为一个点 而不是一个区间或范围 既然是一个差值 就应该是一个具有符号的量值 19 误差 严格意义上讲 过去通过误差分析得到测量结果的所谓 误差 实际上并不是真正的误差 而是被测量不能确定的范围 或者说是测量结果可能存在的最大误差 20 误差 在误差评定时 将测量误差划分为随机误差和系统误差两类 随机误差是 测量结果与在重复性条件下 对同一被测量进行无限多次测量所得结果的平均值之差 注1 随机误差等于测量误差减去系统误差 注2 因为只能进行有限次数 故可能确定的只是随机误差的估计值 21 误差 随机误差一般由许多微小变化的因素造成的 如 计量器具固有 基本 误差 环境条件偏离 人员读数微小因素 其影响时而相加 时而相互抵消 时而这个影响大一些 时而那个影响大一些 呈现随机性 表现在测量值上就是随机误差 对于某一次测量而言 随机误差的大小和符号都是不可预知的 而作为多次测量总体而言 它服从一定的统计规律 因此 可用数理统计的方法估计随机误差对测量结果的影响 22 误差 系统误差定义为 在重复性条件下 对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差 注1 系统误差等于测量误差减去随机误差注2 如真值一样 系统误差及其原因不能完全获知 注3 对测量仪器而言 其系统误差也称为测量仪器的偏移 计量检定中 标准器本身的误差将以固定不变的形式 传递给被检计量器具 所以标准器的误差此时称为系统误差 23 误差 随机误差用测量结果的标准偏差来表示 如果有一个以上的随机误差分量 则将它们按方和根法进行合成 得到的结果称为总随机误差 24 不确定度的意义 它是测量结果质量的指标 不确定度愈小 所述结果与被测量的真值愈接近 质量越高 水平越高 其使用价值越高 不确定度越大 测量结果的质量越低 水平越低 其使用价值也越低 由于测量误差的存在 要得到对被测量值不能肯定的程度 所以要引用不确定度 25 4 测量误差与测量不确定度的主要区别 26 测量误差与测量不确定度的主要区别 返回首页 27 三 测量不确定度评定步骤 1 测量不确定度的来源2 测量不确定度的分类3 测量不确定度的评定4 测量结果及其不确定度的表示 28 1 测量不确定度来源 对被测量的定义不完善 复现测量的测量方法不理想 抽样的代表性不够 即被测量的样本不能代表所定义的被测量 对测量过程受环境影响的认识不周全 或对环境条件的测量与控制不完善 对模拟仪器的读数存在人为偏差 测量仪器的分辨力或鉴别力不够 7 赋予计量标准或标准物质的值不准 8 引用于数据计算的常量或其它参量不准 9 测量方法和测量程序的近似性和假定性 10 在表面上看来完全相同的条件下 被测量重复观测的变化 29 1 测量不确定度来源 以上10项来源大致归纳为 测量方法 1 8 9 测量仪器 6 7 测量条件 2 4 测量人员 5 被测对象 3 10 30 2 测量不确定度的分类 测量不确定度的分类可以简示为 31 1 相关定义 标准不确定度 以标准偏差表示的测量不确定度 不确定度的A类估算 通过对观测列进行统计分析 对标准不确定度进行估算的一种方法 不确定度的B类估算 通过对观测列进行非统计分析 对标准不确定度进行估算的一种方法 合成标准不确定度 当测量结果是由若干个其他的值求得时 按其他各量的方差或 和 协方差算得的标准不确定度 扩展不确定度 确定测量结果区间的量 合理赋予被测量之值分布的大部分可望含与此区间 包含因子 为求得扩展不确定度 对合成标准不确定度所乘之数字因子 自由度 在方差的计算中 和的项数减去对和的限制数 32 1 相关定义 A类评定方法是计算出测量数据的平均值标准差数值 B类评定方法需要了解测量仪器 技术资料 测量方法 检定证书 如电学仪器所涉及到的参数归纳为电压 电流 频率 功率等量的测量 因此 A类评定方法是可以容易实现的 B类评定方法包含了评定人员的经验和不确定度的传递 如检测仪器检定的标准不确定度 仪器分辨率标准不确定度 测量时检测人员布点 测点 的位置偏离引起的不确定度等等 33 1 相关定义 同时 具有多个不确定度的分量 需要对逐个分量进合成 即计算不确定度分量时 涉及到包含因子的选择 而包含因子的选择与概率分布形式和置信概率的大小有关在确定诸多不确定度分量及其包含因子时 需要对被测量重要性进行分析和判断并做出合理的选择 34 2 实验标准差公式 贝塞尔公式贝塞尔公式中 的是由标准差公式定义的 但由于标准差公式中 是真误差值 在实际测量中是无法得到的 因此 无法采用标准差公式求算 而贝塞尔公式即实验标准差解决了这个问题 使得采用 评价随机误差的大小成为可能 在相同条件下 对被测量 不含系统误差 最佳估计值是实验标准差 平均值标准差 即 35 3 测量不确定度评定的通用流程 1 建立数学模型2 求最佳值3 列各分量的表达式4 A类评定及其自由度5 B类评定及其自由度6 各不确定度分量的表达式7 合成标准不确定度8 扩展不确定度 包含因子及自由度 9 测量不确定度的报告 36 3 测量不确定度的评定 1 建立测量模型所谓建立测量模型 就是根据被测量的定义和测量方案 确立被测量与有关量之间的函数关系 数学 测量 模型实际上确定 给出 了被测量测得值不确定度的主来源 37 1 建立测量模型 数学 测量 模型的一般表达式 38 数学 测量 模型 根据测量原理 测量方法 确定被测量 确立满足测量不确定度评定所要求的数学模型 即明确被测量和所有各影响量之间的函数关系 39 数学 测量 模型 数学模型应包含全部对测量结果的不确定度有显著影响的影响量 包括修正值以及修正因子 数学模型既能用来计算测量结果 又能用来全面地评定测量结果的不确定度 40 实例 1 在铜杆体积电阻率测量不确定度的评定中 其数学模型就是一个计算公式 41 实例 2 在金属试件拉伸强度测量不确定度的评定中 其数学模型就是一个计算公式对于具体的材料性能检测来说 其不确定度一般不可能像校准那样十分仔细 42 2 求最佳值 求被测量的最佳值 主要是为了报告测量结果 最佳值 不确定度 和构成相对不确定度 43 3 列出各不确定度分量的表达式 根据数学模型列出各不确定度分量的表达式 44 3 列出各不确定度分量的表达式 式中 称为不确定度传播系数或灵敏系数 其含义是 当变化1个单位值时所引起的变化值 即起了不确定度的传播作用 45 4 不确定度的A类评定 用对观测列进行统计分析的方法来评定的标准不确定度 称为不确定度的A类评定 也称A类不确定度评定 用标准偏差表征 46 5 不确定度的B类评定 用不同于对观测列进行统计分析的方法来评定的标准不确定度 称为不确定度的B类评定 也称B类不确定度评定 47 B类不确定度分量的量化 用不同于对测量样本统计分析的其他方法 进行的标准不确定度的评定 所得到的相应的标准不确定度称为B类标准不确定度分量 用符号uB表示 它用根据经验或资料及假设的概率分布估计的标准 偏 差表征 也就是说其原始数据并非来自观测列的数据处理 而是基于实验或其他信息来估计 含有主观鉴别的成分 用于不确定度B类评定的信息来源一般有 以前的观测数据 对有关技术资料和测量仪器特性的了解和经验 校准证书 检定证书或其他文件提供的数据 准确度的等别或级别 使用手册或某些资料给出的参考数据及其不确定度 规定实验方法的国家标准或类似技术文件中给出的重复性限r或复现性限R 生产或工艺部门提供的技术说明文件 48 B类不确定度分量的量化 例如1 校准证书给出了标称值为1kg砝码质量并说明按包含因子给出的扩展不确定度mg 49 B类不确定度分量的量化 例如2 校准证书给出标称长度为100mm量块的扩展不确定度为包含因子则 50 B类不确定度分量的量化 此时 包含因子与被测量的分布有关 一般按证书给出的分布计算 若证书未给出分布时 可估计为正态分布 当缺乏足够信息时 只能取均匀分布 但在比较重要的场合 且又是合成不确定度中的主要分量 建议随其分布采用保守性的选择 51 B类不确定度分量的量化 正态分布 均匀分布 三角分布 反正弦分布 相应于置信概率 52 B类不确定度分量的量化 例如 在测量某一长度时 估计其长度以90 的概率落在10 06nm到10 16nm之间 并给出最后结果为 10 11 0 05 nm 证书中未给出被测量分布 可假设其为正态分布查表得到 53 B类不确定度分量的量化 于是 其标准不确定度为 54 B类不确定度分量的量化 例如 数字电压表的校准证书给出100VDC测量点的示值误差为E 0 10V 其扩展不确定度且指出被测量以矩形分布估计 由于矩形分布的于是其标准不确定度为 55 B类不确定度分量的量化 由于置信概率为95 于是可计算得出 56 B类不确定度分量的量化 57 B类不确定度分量的量化 来源于其它各种资料或手册在这种情况下 通常得到的信息是被测量分布的极限范围 即可以知道输入量的可能值分布区间的半宽度 即允许误差限的绝对值 58 B类不确定度分量的量化 由于可以看作为对应置信概率置信区间的半宽度 故实际上它就是该输入量的扩展不确定度 于是 输入量的标准不确定度 可表示为 59 B类不确定度分量的量化 覆盖因子的数值与输入量的分布有关 因此 为得到标准不确定度 必须先对输入量的分布进行估计 60 B类不确定度分量的量化 若证书指出被测量的分布 则按该分布对应的值计算 若证书未指出被测量的分布 则一般按正态分布考虑 当缺乏足够信息时 只能取均匀分布 61 6 各不确定度分量的表达式 不确定度评定的第三步是根据数学模型列出各不确定度分量的表达式 62 6 各不确定度分量的表达式 称为不确定度传播系数或灵敏系数 其含义是 当变化1个单位值时所引起值的变化 63 6 各不确定度分量的表达式 也就是说 灵敏系数所描述的是被测量的估计值是如何随输入量估计值而改变的 不确定度的各分量等于各输入量引起的不确定度乘以相应的传播系数的模用表示 64 6 各不确定度分量的表达式 使用传播系数 实际上是进行单位换算 即由输入量单位通过灵敏系数换算到输出量单位 65 7 合成标准不确定度 得到各标准不确定度分量后 需要将各分量合成以得到被测量的合成标准不确定度 这是评定工作的第四步 在合成前必须确保所有的不确定度分量均用标准不确定度表示 66 7 合成标准不确定度 根据方差合成定理 在各输入量相互独立或各输入量之间的相关性可以忽略的情况下 被测量的合成方差可以表示为 67 7 合成标准不确定度 68 7 合成标准不确定度 若采用灵敏系数的符号 则成为 上式通常称为不确定度传播定律 69 7 合成标准不确定度 相对标准不确定度 70 7 合成标准不确定度 上式就成为 71 8 扩展不确定度 扩展不确定度等于合成标准不确定度与包含因子的乘积 因此必须先确定被测量可能值分布的包含因子 而其前提是要确定可能值的分布 72 9 测量不确定度的报告形式 通常在报告测量结果时 使用合成标准不确定度 同时给出有效自由度 73 9 测量不确定度的报告形式 合成标准不确定度可采用以下四种形式 以砝码质量的测量结果为例 74 9 测量不确定度的报告形式 1 2 3 4 75 9 测量不确定度的报告形式 方式 2 括号内的数按标准偏差给出 起末位与前面结果内末位数对齐 方式 3 括号内的数按标准偏差给出 它与前面结果要有相同计量单位 方式 4 正负号后之值按标准偏差给出 它并非置信区间 一般避免使用 76 9 测量不确定度的报告形式 扩展不确定度报告形式 1 当用扩展不确定度表示时 应给出值 77 9 测量不确定度的报告形式 2 当用报告扩展不确定度时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025呼伦贝尔爱心医院招聘37人考前自测高频考点模拟试题及答案详解(各地真题)
- 2025年浙江台州温岭市中医院公开招聘编外员工9人(第四批)考前自测高频考点模拟试题附答案详解(典型题)
- 2025年洛阳洛宁县招聘看护队伍劳务派遣工作人员45人模拟试卷及答案详解(名师系列)
- 2025湖南邵阳市洞口县黄桥镇中心卫生院面向社会公开招聘编外合同制影像(医师)技师考前自测高频考点模拟试题及参考答案详解一套
- 2025河南民航发展投资集团有限公司招聘28人本科起报考前自测高频考点模拟试题及答案详解参考
- 2025国家电投集团陕西公司招聘(11人)模拟试卷参考答案详解
- 2025年上海市闵行区莘庄实验小学代课教师招聘模拟试卷及参考答案详解一套
- 2025广西体育运动学校公开招聘编外聘用人员4人考前自测高频考点模拟试题及答案详解(网校专用)
- 2025广东依顿电子科技股份有限公司招聘FQA工程师岗等(四川绵阳市)模拟试卷及参考答案详解
- 2025北京市怀柔区卫生健康委员会所属事业单位招聘25人考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025年秋人教版二年级上册数学教学计划含教学进度表
- 激光焊接技术在钛合金材料加工中的前沿应用
- 四年级学生健康体质监测方案
- 福建冠豸山简介
- 2.3地表形态与人类活动课件高中地理湘教版选择性必修一
- 码头管理办法公告
- 国企综合管理岗招聘笔试题及答案13套
- 远离手机诱惑班会课件
- 动漫制作培训课程
- 肘关节超声病变诊断与评估
- 2025-2030中国征信行业发展状况与前景趋势研究报告
评论
0/150
提交评论