




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
来自 中国最大的资料库下载 联立方程计量经济学模型的系统估计方法theSystemsEstimationMethods 一 联立方程模型随机误差项方差 协方差矩阵二 三阶段最小二乘法简介三 完全信息最大似然法简介 来自 中国最大的资料库下载 一 联立方程模型随机误差项方差 协方差矩阵 来自 中国最大的资料库下载 随机误差项的同期相关性 随机误差项的相关性不仅存在于每个结构方程不同样本点之间 而且存在于不同结构方程之间 对于不同结构方程的随机误差项之间 不同时期互不相关 只有同期的随机误差项之间才相关 称为具有同期相关性 来自 中国最大的资料库下载 具有同期相关性的方差 协方差矩阵 来自 中国最大的资料库下载 假设 对于一个结构方程的随机误差项 在不同样本点之间 具有同方差性和序列不相关性 即 对于不同结构方程的随机误差项之间 具有且仅具有同期相关性 即 来自 中国最大的资料库下载 于是 联立方程模型系统随机误差项方差 协方差矩阵为 来自 中国最大的资料库下载 二 三阶段最小二乘法简介 3SLS ThreeStagesLeastSquares 来自 中国最大的资料库下载 概念 3SLS是由Zellner和Theil于1962年提出的同时估计联立方程模型全部结构方程的系统估计方法 其基本思路是3SLS 2SLS GLS即首先用2SLS估计模型系统中每一个结构方程 然后再用GLS估计模型系统 来自 中国最大的资料库下载 三阶段最小二乘法的步骤 用2SLS估计结构方程 得到方程随机误差项的估计值 来自 中国最大的资料库下载 OLS估计 OLS估计 来自 中国最大的资料库下载 求随机误差项方差 协方差矩阵的估计量 来自 中国最大的资料库下载 用GLS估计原模型系统 得到结构参数的3SLS估计量为 来自 中国最大的资料库下载 三阶段最小二乘法估计量的统计性质 如果联立方程模型系统中所有结构方程都是可以识别的 并且非奇异 则3SLS估计量是一致性估计量 3SLS估计量比2SLS估计量更有效 为什么 如果 是对角矩阵 即模型系统中不同结构方程的随机误差项之间无相关性 那么可以证明3SLS估计量与2SLS估计量是等价的 这反过来说明 3SLS方法主要优点是考虑了模型系统中不同结构方程的随机误差项之间的相关性 来自 中国最大的资料库下载 三 完全信息最大似然法简介 FIML FullInformationMaximumLikelihood 来自 中国最大的资料库下载 概念 另一种已有实际应用的联立方程模型的系统估计方法 Rothenberg和Leenders于1964年提出一个线性化的FIML估计量 FIML是ML的直接推广 是在已经得到样本观测值的情况下 使整个联立方程模型系统的或然函数达到最大以得到所有结构参数的估计量 来自 中国最大的资料库下载 复习 多元线性单方程模型的最大似然估计 i 1 2 n 来自 中国最大的资料库下载 Y的随机抽取的n组样本观测值的联合概率 来自 中国最大的资料库下载 对数或然函数为 参数的最大或然估计 来自 中国最大的资料库下载 复习 有限信息最大或然法 LIML LimitedInformationMaximumLikelihood 以最大或然为准则 通过对简化式模型进行最大或然估计 以得到结构方程参数估计量的联立方程模型的单方程估计方法 由Anderson和Rubin于1949年提出 早于两阶段最小二乘法 适用于恰好识别和过度识别结构方程的估计 来自 中国最大的资料库下载 在该方法中 以下两个概念是重要的 一是这里的 有限信息 指的是每次估计只考虑一个结构方程的信息 而没有考虑模型系统中其它结构方程的信息 二是这里的 最大或然法 是针对结构方程中包含的内生变量的简化式模型的 即应用最大或然法求得的是简化式参数估计量 而不是结构式参数估计量 来自 中国最大的资料库下载 来自 中国最大的资料库下载 完全信息最大似然函数 ML的直接推广 来自 中国最大的资料库下载 对数或然函数对于协方差逆矩阵的元素取极大值的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 9.2 金属的化学性质说课稿-2024-2025学年九年级化学鲁教版(2024)下册
- 《“爱拼才会赢”》实践课教学设计
- 国有土地使用权转让合同
- 第5课 古代非洲与美洲 教学设计- 2023-2024学年高一下学期统编版(2019)必修中外历史纲要下
- 自考本科传播学概论课件
- 中医试题及答案03
- 双语商务英语合同终止协议及后续技术支持协议
- 信托投资公司外汇借款利率调整及风险管理合同
- 高新技术园区物业前期全面服务合同
- 餐饮企业厨师长全面承包运营合同
- 2025重庆市公安局江北区分局辅警招聘60人考试参考题库及答案解析
- 巴中市恩阳区2025年专项招聘卫生专业技术人员的(50人)考试参考题库及答案解析
- 车规级芯片设计-洞察及研究
- 道路运输业安全培训课件
- 一年级新生家长会校长讲话:习惯奠基成长路家校同行护萌娃
- 2025【粮食购销合同范本】粮食购销合同
- 德邦防御性驾驶培训课件
- 煤场安全生产知识培训课件
- 2025-2026学年人教版(2024)小学体育与健康二年级全一册《防溺水知危险》教学设计
- 软骨分化关键分子机制-洞察及研究
- (完整版)人教八年级下册期末物理测试真题经典及解析
评论
0/150
提交评论