



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
傅里叶傅里叶,JBJ(Fourier,Jean Baptiste Joseph)1768年3月21日生于法国奥塞尔;1830年5月16日卒于巴黎数学、物理学傅里叶出身平民,父亲是位裁缝9岁时双亲亡故,以后由教会送入镇上的军校就读,表现出对数学的特殊爱好他还有志于参加炮兵或工程兵,但因家庭地位低贫而遭到拒绝后来希望到巴黎在更优越的环境下追求他有兴趣的研究可是法国大革命中断了他的计划,于1789年回到家乡奥塞尔的母校执教在大革命期间,傅里叶以热心地方事务而知名,并因替当时恐怖行为的受害者申辩而被捕入狱出狱后,他曾就读于巴黎师范学校,虽为期甚短,其数学才华却给人以深刻印象1795年,当巴黎综合工科学校成立时,即被任命为助教,协助JL拉格朗日(Lagrange)和G蒙日(Monge)从事数学教学这一年他还讽刺性地被当作罗伯斯庇尔(Robespierre)的支持者而被捕,经同事营救获释1898年,蒙日选派他跟随拿破仑(Napoleon)远征埃及在开罗,他担任埃及研究院的秘书,并从事许多外交活动,但同时他仍不断地进行个人的业余研究,即数学物理方面的研究1801年回到法国后,傅里叶希望继续执教于巴黎综合工科学校,但因拿破仑赏识他的行政才能,任命他为伊泽尔地区首府格勒诺布尔的高级官员由于政声卓著,1808年拿破仑又授予他男爵称号此后几经宦海浮沉,1815年,傅里叶终于在拿破仑百日王朝的尾期辞去爵位和官职,毅然返回巴黎以图全力投入学术研究但是,失业、贫困以及政治名声的落潮,这时的傅里叶处于一生中最艰难的时期由于得到昔日同事和学生的关怀,为他谋得统计局主管之职,工作不繁重,所入足以为生,使他得以继续从事研究1816年,傅里叶被提名为法国科学院的成员初时因怒其与拿破仑的关系而为路易十八所拒后来,事情澄清,于1817年就职科学院,其声誉又随之迅速上升他的任职得到了当时年事已高的 PSMde 拉普拉斯(Laplace)的支持,却不断受到 SD泊松(Poisson)的反对1822年,他被选为科学院的终身秘书,这是极有权力的职位1827年,他又被选为法兰西学院院士,还被英国皇家学会选为外国会员傅里叶一生为人正直,他曾对许多年轻的数学家和科学家给予无私的支持和真挚的鼓励,从而得到他们的忠诚爱戴,并成为他们的至交好友在他帮助过的科学家中,有知名的 HC奥斯特(Oersted)、PG狄利克雷(Dirichlet)、NH阿贝尔(Abel)和 JCF斯图姆(Sturm)等人有一件令人遗憾的事,就是傅里叶收到 伽罗瓦(Galois)的关于群论的论文时,他已病情严重而未阅,以致论文手稿失去下落傅里叶去世后,在他的家乡为他树立了一座青铜塑像20世纪以后,还以他的名字命名了一所学校,以示人们对他的尊敬和纪念傅里叶的科学成就主要在于他对热传导问题的研究,以及他为推进这一方面的研究所引入的数学方法早在远征埃及时,他就对热传导问题产生了浓厚的兴趣,不过主要的研究工作是在格勒诺布尔任职期间进行的1807年,他向科学院呈交了一篇很长的论文,题为“热的传播”(Mmoire sur la propagation de la chaleur),内容是关于不连结的物质和特殊形状的连续体(矩形的、环状的、球状的、柱状的、棱柱形的)中的热扩散(即热传导,笔者注)问题其基本方程是这是三维情形在论文的审阅人中,拉普拉斯、蒙日和 SF拉克鲁瓦(Lacroix)都是赞成接受这篇论文的但是遭到了拉格朗日的强烈反对,因为文中所用如下的三角级数(后来被称为傅里叶级数)表示某些物体的初温分布与拉格朗日自己在19世纪50年代处理弦振动问题时对三角级数的否定相矛盾于是,这篇文章为此而未能发表不过,在审查委员会给傅里叶的回信中,还是鼓励他继续钻研,并将研究结果严密化为了推动对热扩散问题的研究,科学院于1810年悬赏征求论文傅里叶呈交了一篇对其1807年的文章加以修改的论文,题目是“热在固体中的运动理论”(Theorie du mouvement de chaleur clansles corps solides),文中增加了在无穷大物体中热扩散的新分析但是在这一情形中,傅里叶原来所用的三角级数因具有周期性而不能应用于是,傅里叶代之以如下的积分形式(后来被称为傅里叶积分):这篇论文在竞争中获胜,傅立叶曾获得科学院颁发的奖金但是评委可能是由于拉格朗日的坚持仍从文章的严格性和普遍性上给予了批评,以致这篇论文又未能正式发表、傅里叶认为这是一种无理的非难,他决心将这篇论文的数学部分扩充成为一本书他终于完成了这部书:热的解析理论(Thorie anatylique de la chaleur),于1822年出版他原来还计划将论文的物理部分也扩充成一本书,名为热的物理理论(Thorie physiquede la chaleur)可惜这个愿望未能实现,虽然处理热的物理方面的问题也是他的得奖论文中的重要内容,而且在他的晚年的研究工作中甚至是更重要的内容热的解析理论,是记载着傅里叶级数与傅里叶积分的诞生经过的重要历史文献,在数学史,乃至科学史上公认是一部划时代的经典性著作然而,对于傅里叶在数学上和数学物理上工作的具体评价,历来众说纷坛有些人只注意了傅里叶级数和傅里叶积分本身的推导,从非时代的严格性标准来要求他实际上,要全面地理解傅里叶的成就,还应该注意到以下两个方面:一是他把物理问题表述为线性偏微分方程的边值问题来处理这一点,连同他在单位和量纲方面的工作,使分析力学超出了I牛顿(Newton)在原理(Principia)中所规定的范畴二是他所发明的解方程的强有力的数学工具产生了一系列派生学科,在数学分析中提出了许多研究课题,极大地推动了19世纪及以后的数学领域中的第一流的工作,并且开拓了一些新的领域(见后文)况且,傅里叶的理论和方法几乎渗透到近代物理的所有部门傅里叶在热的解析理论这部基本著作中,写进了他的差不多所有有关的工作,而且在此书的各个版本中几乎丝毫未加更动因此,把这些内容与其他没有发表的、为人引述的、散见于各处的资料联系贯串起来,就可以切实地概现他的全部研究成果,以及他表述和处理问题的风格同时,通过这些材料,也可以看出,在某些关键之处,傅里叶未能克服的困难和他失败的原因傅里叶在热的分析理论方面的第一件工作中,采用了这样的模型:热是由分立粒子间的穿梭机制传送的,其物理理论是简单的混合过程,所用数学属于18世纪50年代在他所从事研究的问题中,其一是关于排列在一圆环上的n个粒子他获得在n为有限的情形下的完全解他想把结果推广到连续的情形,未能成功,因为当n无限增大时,指数上的时间常数趋于零,从而使所得的解与时间无关后来他才明白应如何修正他的传输模型以避免这一反常的结果此外,在他集中注意于完全解及其困难时,他未能意识到,当t=0时,他的解给出一个内推公式,可用以得到连续情形下的傅氏级数(拉格朗日前此之所以未能发现傅氏级数也可类似地来解释,而并非象通常所认为的那佯,是由于顾虑到严格性所致)傅里叶成功地建立的热传导方程可能是得益于 JB毕奥(Biot)早先关于金属条中的稳定温度的工作,毕奥区分了体内传导和体外辐射但是毕奥的分析,由于用了一个错误的物理导热模型而导出一不正确的方程傅里叶则因构建了较好的物理模型而克服了困难,容易地获得一、二维情形下充分显示与时间的关系的类似于(1)这一型的方程傅里叶的杰作是选择这样一种情形的问题来应用他的方程的,即一条半无穷的带,一端是较热的均匀温度,沿其边则是较冷的均匀温度;具有极其简单的、导源于伯努利兄弟(Bernoullis)和L欧拉(Euler)的分析力学传统中的物理意义稳定情形无非就是笛卡儿坐标下的拉普拉斯方程傅里叶可能试用过复变函数方法(这样的解见于他的热的解析理论一书)但其后就用分离变数法得到了级数解和以下边界条件的方程用无穷矩阵的方法来求方程(4)的解,并将它推广到任意函数f(x),这一工作曾屡次遭受评议但不应忘记,这一工作是在柯西-魏尔斯特拉斯(Cauchy-Weierstrass)的正统理论建立之前几十年做的傅里叶不是一个头脑简单的形式主义者;他精于处理有关“收敛”的问题,在他讨论锯齿形函数的级数表示时就显示出了这种能力有关傅里叶级数的收敛性的几种基本证明,例如狄利克雷的证明,其主要思想均可在傅里叶的著作中找到而且,比任何人更早,他已看到,在计算傅氏级数的系数时,对一给定的三角级数逐项积分,是不能保证其正确性的傅里叶的三角级数展开的使人震惊之处在于,他示明一种似乎是矛盾的性质:在一有限区间内,完全不同的代数式之间的相等性对于很广泛的一类函数中的任何一个函数,都可以相应地造出一个三角级数,它在指定的区间内具有与这函数相同的值他用例子说明,那给定的函数甚至可以在基本区间内分段有不同的代数表示式虽然三角级数展开和任意函数两者都曾为其他人(包括泊松)用过,但前者只限于有关周期现象的问题,而后者,当作为偏微分方程的解出现时,由于其性质,是假定不可能用代数式表示的关于傅里叶这一首次成功的研究结果的早期记载,说明了这个结果的生命力和他本人对此成果的惊异在他的工作中,有受到蒙日影响的痕迹,如用曲面表示解,以及确定方程的解的边界值的分离表示此后,傅里叶满怀信心地进入了新的领域在三维情形遇到了一些困难,但把原方程分为两个方程就解决了这两个方程,一个与内部传导有关,一个则与表面上的温度梯度所产生的辐射有关应用于球体时运用球坐标,结果是一非谐的三角级数展开,其中的本征值是一超越方程的诸根傅里叶运用他关于方程式论的知识,论证了这些根的实数性当然,这一问题曾使他困惑了多年在圆柱体的热传导问题中他又作了进一步的推广,其傅里叶解就是如今所称的贝塞耳(Bessel)函数所用的技巧由傅里叶后来的同事 J C佛朗索(Francois)、斯图姆和 J刘维尔(Liouville)全面地予以普遍化在研究沿一条无穷长的线上的热传导问题时发展出来的傅里叶积分理论,可能是基于拉普拉斯把热扩散方程的解表示为一任意函数的积分变换的思想,这函数表示初始的温度分布傅里叶通过对有限区间中级数展开的推广,分别导出了对原点是对称的和反对称的情形之下的余弦和正弦变换逐渐地他才认识到,把一给定的函数分解为偶函数和奇函数的普遍性傅里叶在这方面的创造性工作于18171818年间又最后一次绽发光辉,他成功地洞察到积分变换解与运算微积之间的关系当时,傅里叶、泊松、柯西之间形成了三足鼎立之争后二人于1815年已开始运用这样的技巧,但是傅里叶针对泊松的批评给予了摧毁性的反击他展示了几个方程的积分变换解,这几个方程是长期以来未能得到分析的,同时他还指出了导至系统理论之门径其后,柯西运用复变函数中的残数(residue)理论也获得了同样的结果作为一位数学家,傅里叶对于实际问题中的严格性的关心,不亚于除柯西和阿贝尔以外的任何人但他未能想到极限理论本身的重要意义在对他1811年获奖论文的评议中,关于缺乏严格性和普遍性的批评,长久以来是被误解了那些批评,其动机有许多是带有非学术成分的泊松和毕奥,是在热扩散理论方面被他超过的劲敌,多年来总是力图贬低傅里叶的成就关于严格性的批评,可能是根据泊松的观点,即认为在球形问题中出现的本征值未能证明是实数,而复数根将导致在物理上是不可能的解(泊松自己在数年后为傅里叶解决了这一问题)所谓傅里叶级数解(2)缺乏普遍性,可能是将它同拉普拉斯早先得到的积分解对比,而在后者中,被积函数清楚地含有任意函数傅里叶的机智在于分析力学方面他对分析技巧和符号表示极为精观力,使他的研究能够获得成功在他之前,分析力学中出现的主要方程常是非线性的,所用解法都是专设的近似法当时,微分方程领域也象是一个尚无通路的丛林傅里叶为解偏微分方程创造了和说明了一种连贯的方法,即可以把一个方程及其级数解按照不同的物理情况清楚地分离为不同的分部来加以分析我国数学家、微分方程方面的著名学者申又枨教授(19011978)曾经说:傅里叶的创造,是给各种类型的偏微分方程(波动方程、扩散方程、拉普拉斯方程等)提供了一种统一的求解方法,就好比从前解“四则问题”时,各种难题有各种解法,而运用代数方程以后,就有了统一的简便的解法这个比喻,很好地形容了傅里叶的方法在微分方程领域的重要意义和广泛的实用价值事实上,傅里叶的方法是如此之强有力,以致过了整整一个世纪,非线性微分方程才重新在数学物理学中突起对傅里叶来说,每一数学陈述(尽管不是形式论证中的每一中间阶段)都应有其物理含意,包括展示真实的运动和能够(至少原则上)被测量两个方面他总是如是地说明他的解,使所得到的极限情况能为实验所检验,而且一有机会他就自己动手来作实验 傅里叶早年草设的物理模型虽很粗糙,但在他1807年所写的文章里,就已全面地把一些物理常数揉进他的热传导理论中对物理意义的关注,使他看到在他的形式技法中所存在的潜力,能检验在傅里叶积分解的指数上出现的成群的物理常数的相关性由此出发,他得出了关于单位和量纲的全面理论,虽然其中一部分是L卡诺(Lazare Carnot)曾预期到的这是自伽利略以来在物理量的数学表示理论方面第一个有成效的进展与他同时代的人,如毕奥,在同一问题上的混乱情形相比,就更显示出傅里叶的成就虽然傅里叶多年从事热的物理理论的研究但是他最初基于热辐射现象方面的贡献却未能存在长久他对他的理论的各种应用都很关心,诸如对温度计的作用和房间供暖问题的分析,以及最重要的、对地球年龄下限首次作出的科学的估算等令人不解的是,傅里叶相信热作为宇宙中的首要媒介的重要性,但他似乎对于热作为一种动力方面的问题却不感兴趣,以致对 S卡诺(Sadi Carnot,是 L卡诺的儿子)有关热动力问题的著名论文毫无所知和傅里叶的著名的热传导问题的成就相比,他在数学的其他方面的工作就鲜为人知了首先是他对方程式论有着长时间的浓厚兴趣早在16岁时他就作出了对笛卡儿正负号法则的一个新证明这一法则可表述如下:设f(x)=xm+a1xm-1+am-1x+am,则f(x)的诸系数具有一系列正负号如果把同号的两相邻系数称为“不变”,异号的称为“变”,那么 f(x)的正(或负)根的数目最多等于序列中“变”(或“不变”)的数目傅里叶的证明方法是这样的:以(x+p)乘f(x),得一新的多项式,它比 f(x)多了一个系数,使系数序列中多了一个正负号,同时多了一个正(或负)根 p;并且可以看出系数序列中“变”(或“不变”)的数目至少增加1个因为傅里叶的这一成果很快就成为标准的证法,所以证明的详情可见于任何一本讲述这一法则的教科书,虽然人们未尝知道这一证法的发明者就是青年傅里叶傅里叶还把笛卡儿法则推广到估计在一给定区间a,b内f(x)的实根数,并于1789年向科学院递交了一篇文章,其中有他对自己的定理的证明,可惜文章在巴黎那革命动荡的年代里丢失了大约30年后这篇文章才得以发表由于另有一位兼职数学家比当(Ferdinand Budan de Bois-Laurent)也发表过类似的结果,所以关于在给定区间内n次代数方程的实根数的判定法,后来被称为傅里叶-比当定理直到傅里叶逝世之前,他始终没有中断过方程式论方面的研究,并且计划写出一部七卷本的专著:方程判定之分析(Analyse des quations dtermines)他已写出头两卷,但他预感到生前大概不可能完成这部著作,于是写了一个全书提要1831年,即他逝世的第二年,由他的友人纳维(Navier)将这部未完成的著作编辑出版从全书提要中,可以看出傅里叶对方程式论有过十分广泛的研究其中最重要的是各种区分实根和虚根的方法,对牛顿-拉夫逊(Raphson)求根近似法的改进,对D伯努利求循环级数中相继项之比的极限值的法则的推广,等等由于傅里叶还有线性不等式的求解法和应用方面的工作以及他对这一问题的出众的理解,因而也被后人称为线性规划的先驱在傅里叶的最后的岁月里,当他支持统计局的工作时,他的研究接触到概率和误差问题他写下了一些关于根据大量观测来估计测量误差的重要文章,发表于1826年和1829年的统计局报告上傅里叶对力学问题也作过相当多的探讨,他曾发表过关于虚功原理的文章纵观傅里叶一生的学术成就,他的最突出的贡献就是他对热传导问题的研究和新的普遍性数学方法的创造,这就为数学物理学的前进开辟了康庄大道,极大地推动了应用数学的发展从而也有力地推动了物理学的发展傅里叶大胆地断言:“任意”函数(实际上是在有限区间上只有有限个间断点的函数)都可以展成三角级数,并且列举大量函数和运用图形来说明函数的三角级数展开的普遍性虽然他没有给出明确的条件和严格的证明,但是毕竟由此开创出“傅里叶分析”这一重要的数学分支,拓广了传统的函数概念l837年狄利克雷正是研究了傅里叶级数理论之后才提出了现代数学中通用的函数定义1854年 G
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年燃气储运中级工考试预测题及解析
- 工作总结及个人成长报告
- 五一银行活动方案
- 田青蛙动态课件
- steam课件电信教学
- 用药安全知识培训材料课件
- 制作表格直播教学课件
- 人教版九年级英语期中基础复习卷(B卷)(含答案无听力音频及原文)
- 黑龙江省绥化市北林区2024-2025学年八年级下学期期末语文试题(含答案)
- 第三单元 勇担社会责任 单元检测题(含答案)-2025-2026学年 八年级上册道德与法治 - 副本
- 2025年教育学家教学理论考试试题及答案解析
- 2025年医疗器械不良事件培训考试试题(有答案)
- 第1课 互联网和物联网 课件 2025-2026学年七年级下册信息技术浙教版
- 信息技术在课堂教学中的应用
- 江苏省宿迁市沭阳县如东实验学校2024-2025学年七年级下学期期末数学试卷(含答案)
- 项目初步验收汇报
- 2025年湖南省高考真题卷政治和答案
- 精神病患者的康复护理计划
- 语“你相遇”文启新程-2025年秋季高一语文开学第一课-2025-2026学年高中主题班会
- 个性化教育实施策略
- 额叶胶质瘤护理查房
评论
0/150
提交评论