




已阅读5页,还剩69页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章总体均数的估计与假设检验 第三章总体均数的估计与假设检验 均数的抽样误差与标准误 t分布 总体均数的估计 假设检验的一般步骤 检验 u检验 两均数的等效检验 正态性检验 两样本方差齐性检验 假设检验时应注意的问题 利用总体均数的可信区间进行假设检验 课堂讨论 一 均数的抽样误差与标准误 其分布特点如下 1 原始总体呈正态分布 则样本均数抽样分布也呈正态分布 甚至原始分布为偏态分布 若n足够大 n 60 则样本均数也逼近正态分布 2 样本均数的总均数等于原始总体均数 反复从总体中抽取n一定的样本 得到无数样本均数 也构成一个总体 某变量值总体分布 某变量值n相同的样本均数总体分布 一 均数的抽样误差与标准误 均数的抽样误差 抽样引起的样本均数与总体均数之间或样本均数之间的差别 标准误 即样本均数的标准差 表示样本均数对总体均数的离散程度 例4 1某市随机抽查12岁男孩100人 得身高均数139 6cm 标准差6 85cm 资料 求标准误 若X或X服从正态分布N 2 则可作正态变量X或X的u代换 则u服从标准正态分布N 0 1 二 t分布 实际工作中 往往未知 S代替 此时就不是u代换 而是t代换 无数t点所组成的分布 称t分布 t分布的特征 1 以0为中心 两侧对称的单峰分布 2 与u分布比较 峰值较低 两边上翘 3 有一个参数 当 t分布 u分布 P804 1 点估计 X 2 区间估计 按一定的概率 1 估计总体均数所在范围 或称可信区间 常用95 和99 的概率估计 1 当 未知时 三 总体均数的估计 例2 1211名18岁男大学生身高得均数172 25厘米 标准差3 31厘米 试估计该地18岁男大学生总体身高均数的95 可信区间 本例n 11 则 10 查t界值表得 双侧t0 0510 2 228 2 未知 但n足够大时 例某地110名18岁男大学生身高均数为172 73厘米 标准差为4 09厘米 试估计该地18岁男大学生总体身高均数的95 可信区间 本例n 110 双侧u0 05 1 96 3 当 已知时 关于可信区间的准确性和精密度准确度反映在可信度 1 的大小上 精密度反映在可信区间的长度上 四 假设检验的一般步骤 例 据大量调查知 健康成年男子脉搏的均数为72次分 某医生在山区随机调查了25名健康男子 其脉搏均数为74 2次 分 标准差为6 0次 分 能否认为该山区成年男子的脉搏高于一般人群 分析两均数不等的原因有两种可能性 1 仅仅由于抽样误差所致 2 除抽样误差外还由于环境条件的影响 如何判断 统计上是通过假设检验来回答这个问题 1 建立假设 H0 检验假设或无效假设 总体参数相等为什么称其为无效假设 H1 备择假设 总体参数不等 2 确立检验水准 指拒绝实际上成立H0的所犯错误的概率 I类错误 通常 0 05 但并不绝对 为什么检验水准 通常取0 05 3 选定检验方法和计算检验统计量如 F X2等 4 确定P值 作出推断结论P值是指由所规定的总体中 本例 0 作随机抽样 获得等于或大于现由样本计算得到的检验统计量值的概率 即P t或u F X2等 若 P 时 则拒绝H0 接受H1P 时 则不拒绝H0 应用 用于两均数比较的假设检验 资料要求 1 资料随机取自正态总体 2 两总体方差齐性 相等 五 t检验 1 样本均数与总体均数比较 例4 4据大量调查知 健康成年男子脉搏的均数为72次 分 某一身在山区随机调查了25名健康男子 其脉搏均数为74 2次 分 标准差为6 0次 分 能否认为该山区成年男子的脉搏高于一般人群 H0 0H1 0单侧 0 05 1 25 24查t界值表 P804 得单侧t0 05 24 1 711因 t 1 833 t0 05 24所以 P 0 05 结论 按照 0 05水准 拒绝H0 故可认为该山区健康成年男子脉搏高于一般人群 上例如用双侧检验 查表得双侧t0 05 24 2 064则 t 1 8330 05 结论相反 单侧检验效率要高于双侧检验 如何选择单侧或双侧检验 主要根据专业知识而定 如某指标只高不低或只低不高 2 配对设计的两均数比较 同源配对观察指标测自同一受试对象或标本 异源配对观察指标测自不同受试对象或标本 但不同受试对象或标本配成对子 每对除处理因素不同外 其它非处理因素一致或基本一致 统计分析是比较配对差值与总体均数0的差别进行的 H0 d 0H1 d 0 0 05 1 11n为对子数或差值个数t0 10 11 1 796 t0 20 11 1 363 故0 20 P 0 10 例 某单位研究饮食中缺乏维生素E与肝中维生素A含量的关系 将同种属的大白鼠按性别相同 年龄 体重相近者配成对子 共8对 并将每对中的两头动物随机分到正常饲料组和E缺乏组 过一定时期将大白鼠杀死 测得其肝中A的含量如下表 问不同饲料的大白鼠肝中维生素A含量有无差别 3 成组设计两样本均数的比较 1 2 2本例t 1 80 05 H0 1 2H1 1 2 0 05 4 成组设计的两样本几何均数的比较一般认为此类资料呈对数正态分布 因此 需将原始资料取对数后 再作两组对数值均数的t检验 分别 H0 两株的总体几何均数相等H1 两株的总体几何均数不等 0 05将两组数据分别取对数 X1 lgA X2 lgB A B分别代表两组原始数据 注意 这里直接比较的是lgG1与lgG2 但间接说明了G1与G2的差别 应用 当 已知 或 未知 但n足够大时 此时t分布接近u分布 用于两均数的比较 常用于两大样本均数的比较 其它资料要求同t检验 六 u检验 例2 18某地抽样调查了部分健康成人的红细胞数 其中男性360人 均数为4 660 1012 L 标准差为0 575 1012 L 女性255人 均数为4 178 1012 L 标准差为0 291 1012 L 试问该地男 女平均红细胞数有无差别 七 两均数的等效检验 是推断两种处理效果是否相近或相等的统计方法 为什么推断两种处理效果是否相近或相等不能用前面所述的假设检验方法 等效检验的假设H0 1 2 H1 1 2 为等效界值 若两总体均数差值在 范围内为等效 超过则为不等效 检验水准 自由度及结果判断同t检验 两样本均数等效检验公式为 注意事项 值的选定在等效检验中十分重要 一般把专业上或公认的有意义的两种处理措施的差值作为等效检验的 值 如 血压的 值为5mmHg 白细胞为500个 mm3 要求样本 H0 1 2 H1 1 2 0 05 1 2 2 2340 02 P 0 05 八 正态性检验 1 图示法 P P图 Q Q图 2 峰度系数 1 偏度系数 2 偏度系数和峰度系数检验 2 峰度系数 0 165 0 457 0 361P 0 5 H0 r1 0 r2 0H1 r1 0 r2 0 0 10或0 2 宜稍大以减少 型错误 1 偏度系数 0 156 0 230 0 678P 0 5 3 柯尔莫柯罗夫 斯米尔诺夫 Kolmogorov Smirnov 检验 一般作为小样本的正态检验方法 例抽样调查某地20名3岁女孩身高 cm 的原始数据如下 80 189 392 497 197 082 589 192 696 296 784 491 394 799 597 987 390 594 8100 1100 7检验样本所属的总体是否呈正态分布 本例经计算X 92 71S 5 89 抽样调查某地20名3岁女孩身高 cm 资料如下 检验统计量为 dmax 0 0869 查表得 P 0 8 九 两样本方差齐性检验 S21较大 S22较小 方差不齐的Levene检验 不依赖总体分布的具体形式 例 由X光片上测得两组病人的肺门横径右侧 cm 算得结果如下 试检验两个方差的齐性 肺癌病人 n1 10 X1 6 21 S1 1 79cm矽肺0期病人 n2 50 X2 4 34 S2 0 56cm 1 1 10 1 9 2 1 50 1 49查附表3 P806 齐性检验用双尾界值 得 F0 10 2 9 49 F0 10 2 9 48 2 08 所以P 0 10 H0 两总体方差相等H1 两总体方差不等 0 10 1 792 0 562 10 22 一般同质的两组资料方差相差不大 若两样本方差相差一倍左右 要注意方差不齐的可能 问题 若方差不齐 将如何处理 1 采用适当的变量变换 使达到方差齐性 2 采用秩和检验 3 采用近似法t 检验 Cochran Cox法 Satterthwaite法 例 由X光片上测得两组病人的肺门横径右侧 cm 算得结果如下 试检验两个方差的齐性 肺癌病人 n1 10 X1 6 21 S1 1 79cm矽肺0期病人 n2 50 X2 4 34 S2 0 56cm H0 2H1 2 0 05 1 选用的方法应符合其应用条件 2 正确理解差别有无显著性的统计意义结论中的 拒绝H0 接受H1 习惯上亦称 差别显著 不应误解为相差很大 反之 不拒绝H0 不应误解为相差不大或一定相等 例两篇同类文章 两样本均数比较 甲文P 0 05 乙文P 0 01 是否可认为乙文中两样本均数差值较甲文大 为什么 十 假设检验时应注意的问题 3 结论不能绝对化统计的结论是按着概率大小作出判断 若取 0 05 此时拒绝H0 仍有0 05的概率犯错误 同样 不拒绝H0 也可产生错误 第一类错误 拒绝实际上成立的H0所犯的错误 P 第二类错误 不拒绝实际上不成立的H0所犯的错误 P 而 未知 样本含量一定时 增大 则减少 减少 则增大 所以 的确定并不是越小越好 一般取0 05较合理 怎样才能同时减少 4 结论时 尽可能明确概率范围 5 统计结论应与专业结论相结合 十一 利用总体均数的可信区间进行假设检验 1 样本均数与总体均数比较 例2 14据大量调查知 健康成年男子脉搏的均数为72次分 某一身在山区随机调查了25名健康男子 其脉搏均数为74 2次 分 标准差为6 0次 分 能否认为该山区成年男子的脉搏高于一般人群 单侧总体均数的95 可信区间 不包括 0 72 P 0 05 2 配对设计的两均数比较 H0 d 0H1 d 0 0 05 包括 d 0 P 0 05 总体均数的95 可信区间 3 成组设计两样本均数的比较 H0 1 2H1 1 2 0 05 总体均数的95 可信区间 包括 1 2 0 P 0 05 H0 0 H0 d 0H0 1 2 0 抽样调查得甲地100名健康男工人的血胆固醇 mg 100ml 得X 180 S 30 假定血胆固醇呈正态分布 问 1 甲地全体健康男工人的血胆固醇平均数估计在什么范围 2 乙地抽样查得男工人血胆固醇X 190 S 3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年招标采购从业人员专业技术能力考试(招标采购合同管理中级)测试题库及答案吉安
- 江苏省泰州市招标采购从业人员专业技术能力考试(招标采购合同管理中级)测试题库及答案(2025年)
- 《科里亚的木匣》课件
- 《破阵子》辛弃疾课件
- 2025水果收购合同模板
- 广东省深圳市坪山区2022-2023学年高三下学期高考二模物理考点及答案
- 文员年度工作总结及计划
- 2025外部合作合同协议范文
- 2025短期劳动合同模板:雇佣临时工协议范本
- 洛钼集团季度汇报
- 2025年司法局招聘司法所协理员历年考试试题与答案
- 右江盆地低温金、锑矿床热液石英:显微结构与地球化学特征的成矿密码
- 致敬 9.3:一场阅兵一部民族精神史诗
- 小学学校“十五五”(2026-2030)发展规划
- 压力容器安全风险管控清单
- 2025年乡村产业发展笔试模拟题库
- 第2课《中国人首次进入自己的空间站》教学设计统编版八年级语文上册
- 基础化学(第五版)课件 第一章 物质结构基础
- 福州市晋安区社区工作者招聘笔试真题2024
- 教学课件模板美术
- 抑郁症的患者护理查房
评论
0/150
提交评论