




已阅读5页,还剩57页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
10年全国中考数学综合解答题选编一、【遵义市】24(10分)如图(1),在ABC和EDC中,ACCECBCD,ACBECD,AB与CE交于F,ED与AB、BC分别交于M、H(1)求证:CFCH;(2)如图(2),ABC不动,将EDC绕点C旋转到BCE=时,试判断四边形ACDM是什么四边形?并证明你的结论ACDBMEFH图(2)ACDBMEFH图(1) 25(10分)某酒厂每天生产A、B两种品牌的白酒共600瓶,A、B两种品牌的白酒每瓶的成本和利润如下表:AB成本(元/瓶)5035利润(元/瓶)2015设每天生产A种品牌的白酒瓶,每天获利元(1)请写出关于的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?ACDEO26(12分)如图,在ABC中,C=,AC+BC=8,点O是斜边AB上一点,以O为圆心的O分别与AC、BC相切于点D、E(1)当AC2时,求O的半径;(2)设AC,O的半径为,求与的函数关系式ABDCPQxyO27(14分)如图,已知抛物线的顶点坐标为Q,且与轴交于点C,与轴交于A、B两点(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD轴,交AC于点D(1)求该抛物线的函数关系式;(2)当ADP是直角三角形时,求点P的坐标;(3)在问题(2)的结论下,若点E在轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由二、【贵州省黔东南州】ABCEBFOOHDD22.(12分)如图,以的边为半径作O分别交,于点.点,于,交于O于,交于。求证:。25、(14分)如图,在平面直角坐标系中,且抛物线经过点。(1)求抛物线的解析式;(2)在抛物线(对称轴的右侧)上是否存在两点、,使四边形为正方形,若存在,求点、的坐标;若不存在,请说明理由。25题图yxAOBCD 项目该基地的累积产量占两基地累积总产量的百分比该基地累积存入仓库的量占该基地的累积产量的百分比 百分比种植基地甲60%85%乙40%22.5%三、【辽宁省沈阳市】21. 如图,AB是8O的直径,点C在BA的延长线上,直线CD与ABCDEFO 8O相切于点D,弦DFAB于点E,线段CD=10,连接BD; (1) 求证:CDE=2B; (2) 若BD:AB=:2,求8O的半径及DF的长。六、(本题12分)23. 某公司有甲、乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品, 一部份存入仓库,另一部分运往外地销售。根据经验,该农产品在收获过程中两个种植基地 累积总产量y (吨)与收获天数x (天)满足函数关系y=2x+3 (1 x 10且x为整数)。该农产品在收获过程中甲、乙两基地的累积产量分别占两基地累积总产量的百分比和甲、乙两基地累积 存入仓库的量分别占甲、乙两基地的累积产量的百分比如下表: (1) 请用含y的代数式分别表示在收获过程中甲、乙两个基地累积存入仓库的量; (2) 设在收获过程中甲、乙两基地累积存入仓库的该种农产品的总量为p(吨),请求出p(吨) 与收获天数x(天)的函数关系式; (3) 在(2)的基础上,若仓库内原有该农产品42.6吨,为满足本地市场需求,在此收获期开始的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出的该种农产品总量m(吨)与收获天数x(天)满足函数关系m= -x2+13.2x-1.6 (1x10且x为整数)。问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?七、(本题12分)24. 如图1,在ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧, BM直线a于点M,CN直线a于点N,连接PM、PN; (1) 延长MP交CN于点E(如图2)。j 求证:BPMCPE;k 求证:PM = PN; (2) 若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变。此时 PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由; (3) 若直线a绕点A旋转到与BC边平行的位置时,其它条件不变。请直接判断四边形MBCN 的形状及此时PM=PN还成立吗?不必说明理由。aABCPMNABCMNaPABCPNMa圖1圖2圖3八、(本题14分)25. 如图1,在平面直角坐标系中,拋物线y=ax2+c与x轴正半轴交于点F(16,0)、与y轴正半 轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重 合,顶点C与点F重合; (1) 求拋物线的函数表达式; (2) 如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物 线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A、B两点重合, 点Q不与C、D两点重合)。设点A的坐标为(m,n) (m0)。 当PO=PF时,分别求出点P和点Q的坐标; 在j的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围; 当n=7时,是否存在m的值使点P为AB边中点。若存在,请求出m的值;若不存 在,请说明理由。xACDEFBOQPyBO(D)yxF(C)E(A)OyxFE圖1圖2備用圖四、【安徽省】20.如图,ADFE,点B、C在AD上,12,BFBC。求证:四边形BCEF是菱形若ABBCCD,求证:ACFBDEABCDEF1221.上海世博会门票价格如下表所示:某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张。有多少种购票方案?列举所有可能结果;如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率。指定日普通票200元平日优惠票100元22.春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售。九(1)班数学建模兴趣小组根据调查,整理出第天(且为整数)的捕捞与销售的相关信息如下:鲜鱼销售单价(元/kg)20单位捕捞成本(元/kg)捕捞量(kg)在此期间该养殖场每天的捕捞量与前一末的捕捞量相比是如何变化的?假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第天的收入(元)与(天)之间的函数关系式?(当天收入日销售额日捕捞成本)试说明中的函数随的变化情况,并指出在第几天取得最大值,最大值是多少?23.如图,已知ABC,相似比为(),且ABC的三边长分别为、(),的三边长分别为、。若,求证:;若,试给出符合条件的一对ABC和,使得、和、进都是正整数,并加以说明;若,是否存在ABC和使得?请说明理由。BACcbaB1A1C1c1b1a1五、【安徽省芜湖市】21(本小题满分8分)如图,直角梯形ABCD中,ADC90,ADBC,点E在BC上,点F在AC上,DFCAEB(1)求证:ADF CAE;(2)当AD8,DC6,点E、F分别是BC、AC的中点时,求直角梯形ABCD的面积BACEDF第21题图22(本小题满分8分)“端午”节前,第一次爸爸去超市购买了大小、质量都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时随机取出火腿粽子的概率为;妈妈发现小亮喜欢吃的火腿粽子偏少,第二次妈妈又去买了同样的5只火腿粽子和1只豆沙粽子放入同一盒中,这时随机取出火腿粽子的概率为(1)请计算出第一次爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若妈妈从盒中取出火腿粽子4只、豆沙粽子6只送爷爷和奶奶后,再让小亮从盒中不放回地任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用字母和数字表示豆沙粽子和火腿粽子,用列清法计算)23(本小题满分12分)如图,BD是O的直径,OAOB,M是劣弧上一点,过点M点作O的切线MP交OA的延长线于P点,MD与OA交于N点(1)求证:PMPN;(2)若BD4,PA AO,过点B作BCMP交O于C点,求BC的长BACDOPMN第23题图24(本小题满分14分)如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(3,1)、C(3,0)、O(0,0)将此矩形沿着过E(,1)、F(,0)的直线EF向右下方翻折,B、C的对应点分别为B、C(1)求折痕所在直线EF的解析式;(2)一抛物线经过B、E、B三点,求此二次函数解析式;(3)能否在直线EF上求一点P,使得PBC周长最小?如能,求出点P的坐标;若不能,说明理由-y0xBAEFC432112-1-2-3-4-5-1-2ABCDEFGHO六、【鞍山市】23.(本题7分)如图,四形ABCD中,对角线相交于点O,E、F、G、H分别是AD,BD, BC,AC的中点。(1)求证:四边形EFGH是平行四边形;(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论。 24.(本题8分)小华将勤工俭学挣得的100元钱按一年定期存入银行,到期后取出50元来购买学习用品,剩下的50元和应得的利息又全部按一年定期存入银行,若存款的年利率又下调到原来的一半,这样到期后可得本息和63元,求第一次存款的年利率(不计利息税)25.(本题10分)已知一次函数y1=ax+b的图象与反比例函数y2=的图象相交于A、B两点,坐标分别为OAxyB(2,4)、(4,2)。(1)求两个函数的解析式;(2)结合图象写出y1y2时,x的取值范围; (3)求AOB的面积;(4)是否存在一点P,使以点ABOP为顶点的四边形为菱形?若存在,求出顶点P的坐标;若不存在,请说明理由。26(本题满分12分,任选一题作答)如图,矩形中,厘米,厘米()动点同时从点出发,分别沿,运动,速度是厘米秒过作直线垂直于,分别交,于当点到达终点时,点也随之停止运动设运动时间为秒(1)若厘米,秒,则_厘米;(2)若厘米,求时间,使,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形与梯形的面积相等,求的取值范围;(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形,梯形,梯形的面积都相等?若存在,求的值;若不存在,请说明理由DQCPNBMADQCPNBMA如图,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10. 点E在下底边BC上,点F在腰AB上. (1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示BEF的面积;(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成12的两部分?若存在,求出此时BE的长;若不存在,请说明理由.ABCDEF如图,在直角梯形ABCD中,ADBC,C90,BC16,DC12,AD21。动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动。设运动的时间为t(秒)(1)设BPQ的面积为S,求S与t之间的函数关系式(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?(3)当线段PQ与线段AB相交于点O,且2AOOB时,求t的值ABQCPD(4)是否存在时刻t,使得PQBD?若存在,求出t的值;若不存在,请说明理由 七、【长沙市】四、解答题(本题共2个小题,每小题8分,共16分)23长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子开发商还给予以下两种优惠方案以供选择:打9.8折销售;不打折,送两年物业管理费物业管理费是每平方米每月1.5元请问哪种方案更优惠?24已知:AB是的弦,D是的中点,过B作AB的垂线交AD的延长线于CBADCEO(1)求证:ADDC;(2)过D作O的切线交BC于E,若DEEC,求sinC五、解答题(本题共2个小题,每小题10分,共20分)25已知:二次函数的图象经过点(1,0),一次函数图象经过原点和点(1,b),其中且、为实数(1)求一次函数的表达式(用含b的式子表示);(2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x1、x2,求| x1x2 |的范围26如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上, cm, OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒 cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1 cm的速度匀速运动设运动时间为t秒(1)用t的式子表示OPQ的面积S;(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;BAPxCQOy第26题图(3)当OPQ与PAB和QPB相似时,抛物线经过B、P两点,过线段BP上一动点M作轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比八、【福建省晋江市】24.(10分)已知:如图,有一块含的直角三角板的直角边长的长恰与另一块等腰直角三角板的斜边的长相等,把该套三角板放置在平面直角坐标系中,且.(1)若双曲线的一个分支恰好经过点,求双曲线的解析式;AOABCDAxAyxA(2)若把含的直角三角板绕点按顺时针方向旋转后,斜边恰好与轴重叠,点落在点,试求图中阴影部分的面积(结果保留). 25.(13分)已知:如图,把矩形放置于直角坐标系中,取的中点,连结,把沿轴的负方向平移的长度后得到.(1)试直接写出点的坐标;(2)已知点与点在经过原点的抛物线上,点在第一象限内的该抛物线上移动,过点作轴于点,连结.若以、为顶点的三角形与相似,试求出点的坐标;AOxBCMy试问在抛物线的对称轴上是否存在一点,使得的值最大.26.(13分)如图,在等边中,线段为边上的中线. 动点在直线上时,以为一边且在的下方作等边,连结.(1) 填空:度;(2) 当点在线段上(点不运动到点)时,试求出的值;(3)若,以点为圆心,以5为半径作与直线相交于点、两点,在点运动的过程中(点与点重合除外),试求的长.AABC备用图(1)ABC备用图(2)BEMCD九、【福州市】19.(满分11分)如图,AB是O的直径,弦CDAB与点E,点P在O上,1=C,ABCPEDO1A (1)求证:CBPD;(2)若BC=3,sinP=,求O的直径。20.(满分12分) 郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典。(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用1000元为全班40位同学没认购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?21.(满分13分)如图,在ABC中,C=45,BC=10,高AD=8,矩形EFPQ的一边QP在边上,E、F两点分别在AB、AC上,AD交EF于点H。(1)求证:;(2)设EF=,当为何值时,矩形EFPQ的面积最大?并求其最大值;ABCPQDFEH(3)当矩形EFPQ的面颊最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFPQ与ABC重叠部分的面积为S,求S与t的函数关系式。22.(满分14分)如图1,在平面直角坐标系中,点B在直线上,过点B作轴的垂线,垂足为A,OA=5。若抛物线过点O、A两点。(1)求该抛物线的解析式;(2)若A点关于直线的对称点为C,判断点C是否在该抛物线上,并说明理由;(3)如图2,在(2)的条件下,O1是以BC为直径的圆。过原点O作O1的切线OP,P为切点(P与点C不重合),抛物线上是否存在点Q,使得以PQ为直径的圆与O1相切?若存在,求出点Q的横坐标;若不存在,请说明理由。十、【广东省】17已知二次函数的图象如图所示,它与轴的一个交点坐标为(1,0) ,与轴的交点坐标为(0,3)求出,的值,并写出此二次函数的解析式;根据图象,写出函数值为正数时,自变量的取值范围18如图,分别以的直角边AC及斜边AB向外作等边,等边已知BAC30,EFAB,垂足为F,连结DF试说明ACEF;求证:四边形ADFE是平行四边形第18题图ABCDEFO3-1xy第18题图19某学校组织340名师生进行长途考察活动,带有行礼170件,计划租用甲、乙两种型号的汽车共有10辆经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李请你帮助学校设计所有可行的租车方案;如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?五、解答题(三)(本大题3小题,每小题9分,共27分)20已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G.CEFB90,EABC30,ABDE4(1)求证:是等腰三角形;(2)若纸片DEF不动,问绕点F逆时针旋转最小_度时,四边形ACDE成为以ED为底的梯形(如图(2)求此梯形的高第20题图(2)ABCGEFD第20题图(1)ABCGEF(D)21阅读下列材料:,。由以上三个等式相加,可得读完以上材料,请你计算下各题:(1)(写出过程);(2);(3)24如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动连接FM、FN,当F、N、M不在同一直线时,可得FMN,过FMN三边的中点作PWQ设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒试解答下列问题:(1)说明FMNQWP;(2)设0x4(即M从D到A运动的时间段)试问x为何值时,PWQ为直角三角形?当x在何范围时,PQW不为直角三角形?(3)问当x为何值时,线段MN最短?求此时MN的值第22题图(2)ABCDF第22题图(1)ABMCFDNWPQMNWPQCPDOBAE十一、【广州市】24(2010广东广州,24,14分)如图,O的半径为1,点P是O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DEAB于点E,以点D为圆心、DE长为半径作D,分别过点A、B作D的切线,两条切线相交于点C(1)求弦AB的长;(2)判断ACB是否为定值,若是,求出ACB的大小;否则,请说明理由;(3)记ABC的面积为S,若4,求ABC的周长.CDBAEO25(2010广东广州,25,14分)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线交折线OAB于点E(1)记ODE的面积为S,求S与的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.十二、【桂林市】23(本题满分8分)某蔬菜公司收购到某种蔬菜104吨,准备加工后上市销售. 该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨. 现计划用16天正好完成加工任务,则该公司应安排几天精加工,几天粗加工?24(本题满分8分)某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案 25(本题满分10分)如图,O是ABC的外接圆,FH是O 的切线,切点为F,FHBC,连结AF交BC于E,ABC的平分线BD交AF于D,连结BFABFECDOH(1)证明:AF平分BAC;(2)证明:BFFD;(3)若EF4,DE3,求AD的长。26(本题满分12分)如图,过A(8,0)、B(0,)两点的直线与直线交于点C平行于轴的直线从原点O出发,以每秒1个单位长度的速度沿轴向右平移,到C点时停止;分别交线段BC、OC于点D、E,以DE为边向左侧作等边DEF,设DEF与BCO重叠部分的面积为S(平方单位),直线的运动时间为t(秒)(1)直接写出C点坐标和t的取值范围; (2)求S与t的函数关系式;(3)设直线与轴交于点P,是否存在这样的点P,使得以P、O、F为顶点的三角形为等腰三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由ABCDPEF yx8O ABC yx8O十三、【河北省】22(本小题满分9分)ABC y8EDxOMN如图13,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2)过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N(1)求直线DE的解析式和点M的坐标;(2)若反比例函数(x0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;(3)若反比例函数(x0)的图象与MNB有公共点,请直接写出m的取值范围图14-1连杆滑块滑道23(本小题满分10分)观察思考某种在同一平面进行传动的机械装置如图14-1,图14-2是它的示意图其工作原理是:滑块Q在平直滑道l上可以左右滑动,在Q滑动的过程中,连杆PQ也随之运动,并且HlOPQ图14-2PQ带动连杆OP绕固定点O摆动在摆动过程中,两连杆的接点P在以OP为半径的O上运动数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O作OHl于点H,并测得OH=4分米,PQ=3分米,OP=2分米解决问题(1)点Q与点O间的最小距离是 分米;点Q与点O间的最大距离是 分米;点Q在l上滑到最左端的位置与滑到最右端位置间的距离是 分米(2)如图14-3,小明同学说:“当点Q滑动到点H的位置时,PQ与O是相切的”你认为他的判断对吗?为什么?HlO图14-3P(Q)(3)小丽同学发现:“当点P运动到OH上时,点P到l的距离最小”事实上,还存在着点P到l距离最大的位置,此时,点P到l的距离是 分米;当OP绕点O左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数24(本小题满分10分)在图15-1至图15-3中,直线MN与线段AB相交于点O,1=2=45(1)如图15-1,若AO=OB,请写出AO与BD的数量关系和位置关系;(2)将图15-1中的MN绕点O顺时针旋转得到图15-2,其中AO=OB求证:AC=BD,ACBD;(3)将图15-2中的OB拉长为AO的k倍得到图15-3,求的值图15-2ADOBC21MN图15-3ADOBC21MN图15-1ADBMN12O25(本小题满分12分)如图16,在直角梯形ABCD中,ADBC,AD=6,BC=8,点M是BC的中点点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止设点P,Q运动的时间是t秒(t0)(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围)(2)当BP=1时,求EPQ与梯形ABCD重叠部分的面积MADCBPQE图16ADCB(备用图)M(3)随着时间t的变化,线段AD会有一部分被EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由26(本小题满分12分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润=销售额成本广告费)若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10a40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w外(元)(利润=销售额成本附加费)(1)当x=1000时,y= 元/件,w内= 元;(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?十四、【河南省】21(9分)如图,直线与反比例函数的图象交于A,B两点(1)求、的值;(2)直接写出时x的取值范围;ABD yECxOP(3)如图,等腰梯形OBCD中,BC/OD,OB=CD,OD边在x轴上,过点C作CEOD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由22(10分)(1)操作发现如图,矩形ABCD中,E是AD的中点,将ABE沿BE折叠后得到GBE,且点G在举行ABCD内部小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由(2)问题解决保持(1)中的条件不变,若DC=2DF,求的值;(3)类比探求保持(1)中条件不变,若DC=nDF,求的值23(11分)在平面直角坐标系中,已知抛物线经过A,B,C三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S求S关于m的函数关系式,并求出S的最大值(3)若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标AB yCxOM十五、【湖南省常德市】22. 已知图7中的曲线函数(m为常数)图象的一支.(1) 求常数m的取值范围;(2) 若该函数的图象与正比例函数图象在第一象限的交点为A(2,n),求点A的坐标及反比例函数的解析式.OAyx图76 (本大题2个小题,每个题8分,满分16分)23. 今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少吧?24. 如图8.AB是O的直径,A=30o,延长OB到D使BD=OB.图8AODBC(1) 是否是等边三角形?说明理由.(2) 求证:DC是O的切线.7 (本大题2个小题,每小题10分,满分20分)25. 如图9,已知抛物线轴交于点A(4,0)和B(1,0)两点,与y轴交于C点.(1) 求此抛物线的解析式;(2) 设E是线段AB上的动点,作EFAC交BC于F,连接CE,当的面积是面积的2倍时,求E点的坐标;ABOC图9yx(3) 若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.26. 如图10,若四边形ABCD、四边形CFED都是正方形,显然图中有AG=CE,AGCE.(1) 当正方形GFED绕D旋转到如图11的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由.(2) 当正方形GFED绕D旋转到如图12的位置时,延长CE交AG于H,交AD于M.求证:AGCH;当AD=4,DG=时,求CH的长。ABCDEF图110GAD图11FEBCGADBCEFHM图12十六、【江苏省连云港市】22(本题满分8分)已知反比例函数y的图象与二次函数yax2x1的图象相交于点(2,2)(1)求a和k的值;(2)反比例函数的图象是否经过二次函数图象的顶点,为什么?23(本题满分10分)在一次数学测验中,甲、乙两校各有100名同学参加测试测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%(男(女)生优分率100%,全校优分率100%)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因A第24题BCBDCBODCB24(本题满分10分)如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕着点O顺时针旋转,试解决下列问题: (1)画出四边形ABCD旋转后的图形;(2)求点C旋转过程事所经过的路径长;(3)设点B旋转后的对应点为B,求tanDAB的值25(本题满分10分)我市某工艺品厂生产一款工艺品已知这款工艺品的生产成本为每件60元经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系售价x(元)7090销售量(件)30001000(利润(售价成本价)销售量)(1)求销售量y(件)与售价x(元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40 000 元?26(本题满分10分)如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得AEP74,BEQ30;在点F处测得AFP60,BFQ60,EF1km(1)判断ABAE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果精确到0.1km)(参考数据:1.73,sin74,cos740.28,tan743.49,sin760.97,cos760.24)ADBADEBADFEBADQFEBADPQFEBAD27(本题满分10分)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线如,平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有_;(2)如图1,梯形ABCD中,ABDC,如果延长DC到E,使CEAB,连接AE,那么有S梯形ABCDSABE请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);(3)如图,四边形ABCD中,AB与CD不平行,SADCSABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由ADBADEBADCFEBADDQFEBAD图1ADBADCFEBADDQFEBAD图228(本题满分14分)如图,在平面直角坐标系中,O为坐标原点,C的圆心坐标为(2,2),半径为函数yx2的图象与x轴交于点A,与y轴交于点B,点P为AB上一动点(1)连接CO,求证:COAB;(2)若POA是等腰三角形,求点P的坐标;(3)当直线PO与C相切时,求POA的度数;当直线PO与C相交时,设交点为E、F,点M为线段EF的中点,令POt,MOs,求s与t之间的函数关系,并写出t的取值范围ADBADxPOCFEBADy十七、【南京市】24.(8分)甲车从A地出发以60km/h的速度沿公路匀速行驶,0.5小时后,乙车也从A地出发,以80km/h的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车。请建立一次函数关系解决上述问题。25.(8分)如图,AB是O的直径,点D在O上,DAB=45,BCAD,CDAB。(1)判断直线CD与O的位置关系,并说明理由;(2)若O的半径为1,求图中阴影部分的面积(结果保留)ADBDCDO时间第一个月第二个月清仓时单价(元)8040销售量(件)20026.(8分)学习图形的相似后,我们可以借助探索两个直角三角形全等的条件所获得经验,继续探索两个直角三角形相似的条件。(1)“对与两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”。类似地,你可以等到:“满足 ,或 ,两个直角三角形相似”。(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地你可以得到“满足 的两个直角三角形相似”。请结合下列所给图形,写出已知,并完成说理过程。ADBCDDD已知:如图, 。试说明RtABCRtABC.27.(8分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东环境保护工程职业学院《柳琴戏艺术概论》2023-2024学年第二学期期末试卷
- 周口职业技术学院《教育技术前沿》2023-2024学年第二学期期末试卷
- 广东茂名健康职业学院《诊断学(一)》2023-2024学年第二学期期末试卷
- 湖南应用技术学院《视觉传达专题设计》2023-2024学年第二学期期末试卷
- 辽宁大学《医疗健康产业的商业模式创新与估值》2023-2024学年第二学期期末试卷
- 郑州师范学院《纳米材料概论》2023-2024学年第二学期期末试卷
- 郑州幼儿师范高等专科学校《医学影像诊断学实验》2023-2024学年第二学期期末试卷
- 安全理论考试试题及答案
- 湖北师范大学《大学人文专题教育》2023-2024学年第二学期期末试卷
- 中国计量大学《城市生态学》2023-2024学年第二学期期末试卷
- 新高一数学衔接课程
- 小学科学教学专题研究
- 2024河北建投遵化热电限责任公司招聘21人高频考题难、易错点模拟试题(共500题)附带答案详解
- 5.4 核酸疫苗(mrna疫苗)
- MOOC 线性代数及其应用-天津大学 中国大学慕课答案
- (2024年)银行不良清收技巧培训课件(学员版)
- 广东省东莞市2022-2023学年高二上学期期末考试化学试题(解析版)
- 生地会考动员决战生地之巅生地百日冲刺动员主题班会课件
- 养老护理员(三级)重点复习考试题库(500题)
- 常州市溧阳市2022-2023学年七年级第二学期数学期末试卷(含答案解析)
- 广州市番禺区2023年四年级下学期《数学》期末真题与参考答案
评论
0/150
提交评论