




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教材分析:(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显教学中各部分知识之间过渡要自然流畅,不生硬 (2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点 (3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解教学目标:1、知识与技能:掌握直线方程的一般式Ax+By+C=0的特征(A、B不同时为0)能将直线方程的五种形式进行转化,并明确各种形式中的一些几何量(斜率、截距等);2、过程与方法:主动参与探究直线和二元一次方程关系的数学活动,通过观察、推理、探究获得直线方程的一般式。学会分类讨论及掌握讨论的分界点;3、情感、态度与价值观:体验数学发现和探索的历程,发展创新意识教学重点:直线方程一般式Ax+By+C=0(A、B不同时为0)的理解教学难点:直线方程一般式Ax+By+C=0(A、B不同时为0)与二元一次方程关系的深入理解直线方程一般式Ax+By+C=0(A、B不同时为0)的应用。教学方法:引导探究法、讨论法教学过程:创设情境,引入新课:1、 复习:写出前面学过的直线方程的各种不同形式,并指出其局限性:名 称 几 何 条 件 方程 局限性点斜式点P(x0,y0)和斜率k y-y0=k(x-x0)斜率存在的直线斜截式斜率k,y轴上的截距by=kx+b斜率存在的直线两点式P1(x1,y1),P2(x2,y2)不垂直于x、y轴的直线截距式在x轴上的截距a,在y轴上的截距b不垂直于x、y轴的直线,不过原点的直线过点(x0,y0)与x轴垂直的直线可表示成 x=x0 , 过点(x0,y0)与y轴垂直的直线可表示成 y=y0 。2、 问题一:上述四种直线方程的表示形式都有其局限性,是否存在一种更为完美的代数形式可以表示平面中的所有直线?提 示:上述四种形式的直线方程有何共同特征?能否整理成统一形式?(这些方程都是关于x、y的二元一次方程) 猜 测:直线和二元一次方程有着一定的关系。新课探究:问题:(1)过点(2,1),斜率为2的直线的方程是_y-1=2(x-2)(2)过点(2,1),斜率为0的直线方程是_y=1_(3)过点(2,1),斜率不存在的直线的方程是_x=2_思考1 :以上方程是否都可以用 Ax+By+C=0表示?任意一条直线是否都可以用二元一次方程Ax+By+C=0(A、B不同时为0)来表示?答: 2x-y-3=0 y-1=0 x-2=0在平面直角坐标系中,每一条直线有斜率k存在和k不存在两种情况下,直线方程可分别写为和两种形式,它们又都可以变形为Ax+By+C=0(A、B不同时为0)的形式,即:直线 Ax+By+C=0(A、B不同时为0)【结论:】在平面直角坐标系中,任意一条直线都可以用二元一次方程Ax+By+C=0(A、B不同时为0)来表示。思考2:对于任意一个二元一次方程Ax+By+C=0(A,B不同时为零)能否表示一条直线? 证明:(1)当B0时方程可变形为它表示过点 (0,-)斜率为-的直线 (2) 当B=0时 因为A,B不同时为0所以A0 则有Ax=-C即x=-这表示的是与x轴垂直的直线 【结论:】 每个一个二元一次方程Ax+By+C=0(A,B不同时为零)都表示一条直线。由上面讨论可知,(1)平面上任一条直线都可以用一个关于x,y的二元一次方程表示,(2)关于x,y的二元一次方程都表示一条直线.1.直线的一般式方程我们把关于x,y的二元一次方程Ax+By+C=0 (A,B不同时为零)叫做直线的一般式方程,简称一般式注:对于直线方程的一般式,一般作如下约定:(1)、一般按含x项、含y项、常数项顺序排列(2)、x项的系数为正;(3)、x,y的系数和常数项一般不出现分数;(4)、无特别说明时,最好将所求直线方程的结果写成一般式。 深入探究:二元一次方程Ax+By+C=0的系数A,B和常数项C对直线的位置的影响:平行与x轴 A=0 , B0 ,C0; 平行与y轴 B=0 , A0 , C0; 与x轴重合 A=0 , B0 ,C=0; 与y轴重合 B=0 , A0, C=0; 过原点 C=0,A、B不同时为0;例题分析:例1、已知直线经过点A(6,-4)斜率为-,求直线的点斜式方程,一般式方程和截距式方程。 解:经过点A(6,-4)斜率为-的直线的点斜式方程为y+4=-(x-6)化为一般式为4x+3y-12=0截距式方程为说明:在讨论直线问题时,常常将直线方程的形式相互转化。例2 根据下列条件,写出直线的方程,并把它化成一般式:1.经过点P(3,-2),Q(5,-4);解:直线的两点式方程为化为一般式方程为x+y-1=02.在x轴,y轴上的截距分别是2,3解:直线的截距式方程为 化为一般式 方程为 3x+2y-6=0 说明:在遇到问题时,根据条件写出适当形式的方程,然后再化为一般式。课时小结:1、关于x,y的二元一次方程Ax+By+C=0 (A,B不同时为零) 叫做直线的一般式方程,简称一般式。 2、二元一次方程Ax+By+C=0的系数A,B和常数项C对直线的位置的影响: 平行与x轴 A=0 , B0 ,C0; 平行与y轴 B=0 , A0 , C0; 与x轴重合 A=0 , B0 ,C=0; 与y轴重合 B=0 , A0, C=0; 过原点 C=0,A、B不同时为0;课后作业:1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全培训效果评估措施课件
- 2025广东深圳市宝安区陶园中英文实验学校招聘初中英语教师2人考前自测高频考点模拟试题及答案详解(易错题)
- 跨境电商协议的关键条款
- 2025年滁州明光市公开引进高中教育紧缺人才11人模拟试卷及答案详解参考
- 企业内部培训资源与平台建设
- 以淡淡的书香为话题的初中作文7篇
- 2025湖北武汉大学中南医院咸宁医院咸宁市第一人民医院招聘15人考前自测高频考点模拟试题及答案详解(典优)
- 2025福建省水利投资开发集团有限公司招聘1人考前自测高频考点模拟试题及答案详解(典优)
- 2025年4月广东深圳博物馆劳务派遣工作人员招聘1人模拟试卷及1套完整答案详解
- 技术方案撰写与评审标准
- JT-T 329-2025 公路桥梁预应力钢绞线用锚具、夹具和连接器
- 2024-2025学年广东省深圳市南山区四年级(上)期末数学试卷
- 物业保安培训课程内容与实施策略
- 宿舍交接协议书范本
- 区域医药经理的管理职能
- 《基于PLC的自动灌溉系统设计(附IO表和程序梯形图)》14000字
- 人工智能平台服务合同
- DB33-T 1406-2024 职务科技成果转化管理规范
- 2025经皮去肾交感神经术治疗高血压专家建议
- 《摩登时代观后感》课件
- (完整版)小学1-6年级英语单词(人教版)
评论
0/150
提交评论