免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数与一次函数交点求范围专题1. 在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,2),B(3,4)(1求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点)若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围?2.二次函数y=x2+bx+c的图象如图所示,其顶点坐标为M(1,-4)(1)求二次函数的解析式;(2)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y=x+n与这个新图象有两个公共点时,求n的取值范围3已知二次函数y=(t+1)x2+2(t+2)x+在x=0和x=2时的函数值相等(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(3,m),求m和k的值;(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位请结合图象回答:当平移后的直线与图象G有公共点时,求n的取值范围4.已知二次函数y=x2-2(k+1)x+k2-2k-3与x轴有两个交点(1)求k的取值范围;(2)当k取最小的整数时,求二次函数的解析式;(3)将(2)中求得的抛物线在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象请你画出这个新图象,并求出新图象与直线y=x+m有三个不同公共点时m的值1.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,2),B(3,4)(1求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点)若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围?解:(1)抛物线y=2x2+mx+n经过点A(0,2),B(3,4),代入得:,解得:,抛物线解析式为y=2x24x2,对称轴为直线x=1;(2)由题意得:C(3,4),二次函数y=2x24x2的最小值为4,由函数图象得出D纵坐标最小值为4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,直线BC解析式为y=x,当x=1时,y=,则t的范围为4t2.二次函数y=x2+bx+c的图象如图所示,其顶点坐标为M(1,-4)(1)求二次函数的解析式;(2)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y=x+n与这个新图象有两个公共点时,求n的取值范围134134(1)因为M(1,-4)是二次函数y=(x+m)2+k的顶点坐标,所以y=(x-1)2-4=x2-2x-3,(2)令x2-2x-3=0,解之得:x1=-1,x2=3,故A,B两点的坐标分别为A(-1,0),B(3,0)如图,当直线y=x+n(n1),经过A点时,可得n=1,当直线y=x+n经过B点时,可得n=-3,n的取值范围为-3n1,翻折后的二次函数解析式为二次函数y=-x2+2x+3当直线y=x+n与二次函数y=-x2+2x+3的图象只有一个交点时,x+n=-x2+2x+3,整理得:x2-x+n-3=0,=b2-4ac=1-4(n-3)=13-4n=0,解得:n=134,n的取值范围为:n,由图可知,符合题意的n的取值范围为:n或-3n14.已知二次函数y=x2-2(k+1)x+k2-2k-3与x轴有两个交点(1)求k的取值范围;(2)当k取最小的整数时,求二次函数的解析式;(3)将(2)中求得的抛物线在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象请你画出这个新图象,并求出新图象与直线y=x+m有三个不同公共点时m的值解:(1)抛物线与x轴有两个交点,=4(k+1)2-4(k2-2k-3)=16k+160k-1k的取值范围为k-1(2)k-1,且k取最小的整数,k=0y=x2-2x-3=(x-1)2-4(3)翻折后所得新图象如图所示平移直线y=x+m知:直线位于l1和l2时,它与新图象有三个不同的公共点当直线位于l1时,此时l1过点A(-1,0),0=-1+m,即m=1当直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 演员劳动合同范本模板
- 购买移动厨房合同范本
- 湿地公园保安合同范本
- 酒店合资协议合同范本
- 灌注桩基合同补充协议
- 2025年高中一年级化学下册期中测试试卷(含答案)
- 物业用房ab合同范本
- 社区团购推广合同范本
- 置换合作服务合同范本
- 购销办公家具合同范本
- 公证财产协议书范本
- 2024年锦州辅警招聘考试真题附答案详解(综合卷)
- 2025年高校教师资格证之高等教育学测试卷附答案
- 2025-2026学年高二上学期《如何引导高中生“碳索绿色未来”培养环保意识》主题班会课件
- 北师大版数学七年级上册期中综合能力测评卷(含解析)
- 农业经理人考试题库四级及答案
- 门面反恐应急预案
- 《移动电源车运维管理技术规范(柴油机式)》
- 出租注册地址合同范本
- DB32∕T 4700-2024 蓄热式焚烧炉系统安全技术要求
- DB31T 1605-2025电动自行车充换电柜建设和消防安全管理要求
评论
0/150
提交评论