




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档高考数学阶段复习试卷:三角形中的最值问题1. 在中,分别为角,所对的边长,已知:,(其中)(1)当时,证明:;(2)若,求边长的最小值.2. 已知函数(1)求函数在区间上的值域;(2)在中,角所对的边分别是若角为锐角,且,求面积的最大值。3. 已知函数()若方程在上有解,求的取值范围;()在中,分别是所对的边,当()中的取最大值,且,时,求的最小值4. 在中,求角的值;如果,求面积的最大值5. 如图,扇形,圆心角等于,半径为,在弧上有一动点,过引平行于的直线和交于点,设,求面积的最大值及此时的值.6. 如图,游客从某旅游景区的景点处下山至处有两种路径一种是从沿直线步行到,另一种是先从沿索道乘缆车到,然后从沿直线步行到现有甲、乙两位游客从处下山,甲沿匀速步行,速度为/在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到假设缆车匀速直线运动的速度为/,山路长为,经测量,求索道的长;问乙出发多少分钟后,乙在缆车上与甲的距离最短?为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在什么范围内?7. 如图,在等腰直角三角形中,点在线段上若,求的长;若点在线段上,且,问:当取何值时,的面积最小?并求出面积的最小值试卷答案1. 答案:见解析见解析分析:,由正弦定理得,化简得:,为正三角形,. 由余弦定理得;,又由知:再由可得:,设,下面求的最值.求导函数,当时,解得,其中舍去.由于当时,;当时,故在上时减函数,在上是增函数,因此当时,取极小值,又在上有且只有一个极值点,所以当时,取到最小值.,于是在中边长存在最小值,不存在最大值,其最小值为.2. 答案:答案见解析分析:(),由,有,得函数的值域为.()由,有,又角为锐角,则,从而,得由余弦定理得:,又,故。从而,故当,即为正三角形时,的面积有最大值.3. 答案:答案见解析分析:(1),在内有 (2), 或,当且仅当时有最大值 有最小值,此时4. 答案:答案见解析分析:因为,所以因为,所以因为,所以,因为,所以,所以(当且仅当时,等号成立),所以,所以面积最大值为5. 答案:6. 答案:见解析分析:如图作于点,设,则,由知:设乙出发分钟后到达点,此时甲到达点,如图所示则:,由余弦定理得:,其中,当时,最小,此时乙在缆车上与甲的距离最短由知:,甲到用时:若甲等乙分钟,则乙到用时:,在上用时:此时乙的速度最小,且为:/若乙等甲分钟,则乙到用时:,在上用时:此时乙的速度最大,且为:/,故乙步行的速度应控制在范围内7. 答案:或 分析:在中,由余弦定理得,得,解得或设,在中,由正弦定理,得,所以,同理故因为,所以当时,的最大值为,此时的面积取到最小值即时,的面积的最小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年社区护理自考题库及答案
- 2025年护理职责和制度题库及答案
- (正式版)DB65∕T 4302-2020 《新疆林果资源地图图式》
- (正式版)DB65∕T 4232-2019 《机械化育肥牛舍工艺设施的设计与建造要求》
- (正式版)DB65∕T 4192-2019 《生态绿化工程盐碱地改良技术规程》
- 2025年医院护航员考试题及答案
- 莆田市高级技工学校教师招聘考试真题2024
- Reading and interaction说课稿高中英语沪教版2020选择性必修第一册-沪教版2020
- 2025白银希望职业技术学院辅导员考试试题及答案
- 第二单元 第6课《数字身份辩设备》说课稿人教版(2024)初中信息科技七年级上册
- 肿瘤免疫治疗不良反应
- 新版中国食物成分表
- 【《城市文化与城市可持续发展探究:以S市为例》10000字(论文)】
- 第一次月考 (1-2单元)(月考)- 2024-2025学年六年级上册数学人教版
- 信创的基础知识培训课件
- 河南省中小学校本课程建设案例评选申报表
- 医疗装备应急管理与替代程序试题
- DZ∕T 0274-2015 地质数据库建设规范的结构与编写(正式版)
- 医院门诊医生绩效考核标准及评分细则
- 临时工工伤私了协议书
- 自动扶梯维护培训课件
评论
0/150
提交评论