数学方法与数学史之浅谈古巴比伦与古埃及数学.doc_第1页
数学方法与数学史之浅谈古巴比伦与古埃及数学.doc_第2页
数学方法与数学史之浅谈古巴比伦与古埃及数学.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安庆师范学院数学与应用数学 古埃及与古希腊数学方法史浅谈古巴比伦与古埃及数学 数学之蕊数学知识伴随着人类的文明的产生而起源,并率先在几个文明古国开始了漫长的原始积累过程,人类的祖先为我们留下了珍贵的、可供研究的原始资料,其中最著名的古埃及象形文字纸草书和巴比伦楔形文字泥板书,较为集中地反映了古埃及数学和巴比伦数学的水平,它们被视为人类早期数学知识积累的代表。古埃及数学现今我们对古埃及数学的认识,主要根据两卷用僧侣文写成的纸草书;一卷藏在伦敦,叫做莱因德纸草书,一卷藏在莫斯科。 古埃及数学 埃及最古老的文字是象形文字,后来演变成一种较简单的书写体,通常叫僧侣文。除了这两卷纸草书外,还有一些写在羊皮上或用象形文字刻在石碑上和木头上的史料,藏于世界各地。两卷纸草书的年代在公元前1850前1650年之间,相当于中国的夏代。 埃及很早就用十进记数法,但却不知道位值制,每一个较高的单位是用特殊的符号来表示的。例如111,象形文字写成三个不同的字符,而不是将 1重复三次。埃及算术主要是加法,而乘法是加法的重复。 他们能解决一些一元一次方程的问题,并有等差、等比数列的初步知识。占特别重要地位的是分数算法,即把所有分数都化成单位分数(即分子是1的分数)的和。 莱因德纸草书用很大的篇幅来记载2/N(N从5到101)型的分数分解成单位分数的结果。为什么要这样分解以及用什么方法去分解,到现在还是一个谜。这种繁杂的分数算法实际上阻碍了算术的进一步发展。 纸草书还给出圆面积的计算方法:将直径减去它的1/9之后再平方。计算的结果相当于用3.1605作为圆周率,不过他们并没有圆周率这个概念。根据莫斯科纸草书,推测他们也许知道正四棱台体积的计算方法。总之,古代埃及人积累了一定的实践经验,但还没有上升为系统的理论。 众所周知我们所熟悉的埃及金字塔,这是埃及人的骄傲,这其中就蕴含着丰富的几何,代数方面的数学知识。也是古埃及数学的应用于典型成就。我们简单了解一下其中规模最大的一座金字塔:塔高一百四十六点五米;塔基每面长约二百四十米,绕塔一周约一公里;塔内有甬道、石阶、墓室等。这座金字塔是在公元前两千八百年建成的,在一八八九年巴黎埃菲尔铁塔建成以前的四千六百多年间,它一直是世界上最高的建筑物。这确实是了不起的奇迹!古埃及人在建造这些巨大建筑物的过程中,积累了丰富的几何学知识。 我们设想,在建造金字塔之前,一定得先画出一张平面图。估计这张图是画在粘土板上的,它大概就是世界上的第一张平面图了。分析起来,制图人肯定知道,图样和竣工后的建筑物,尺寸尽管可以不同,形状却是一样的。由此可以判断,当时的埃及人已经掌握了比例和相似形的知识。 这里的相似知识用我们现在的观念都知道要将现实物经过比例缩小,这里面就存在与画图问题,经过查阅资料,我们知道当时的古埃及人要解决的最大难题是如何准确在图上画出直角,这是因为金字塔的地基必须严格成正方形。那时候不像现在有直角三角形这样的仪器,那么需要画出直角就很不容易了。猜想他们当时画直角的时候应该是通过两条绳子互相拉直构成直角。其实实践出真知。早期的埃及人也的确是用绳子绕木桩的方法来画圆。以及互相拉绳子来画直角的,他们从长绳子画出来的圆大,短绳子画出来的圆小,知道了圆面积的大小,是由圆周到圆心的距离来决定的。这就是我们常说的半径。 这里说到圆与半径,就不得不提到面积了,埃及人对于圆面积的计算有其独到之处.如S(8d/9)2,其中d为直径.这就等于取3.1605.埃及人也有算立方体、箱体、柱体和其他图形体积的法则.有些法则是对的,有些也只能算是近似的.这里最了不起的法则要算用来计算棱台体积的公式.棱台底是正方形,这个公式用现代记号是:Vh/3(a2abb2)这里h是高,a、b是上下底的边长.这个公式之所以了不起,是因为正确,而且形式是对称的.埃及数学的另一个主要用途是天文测量和计算,这从相当早的时期就是这样了. 古巴比伦数学这就是古埃及数学,有着他的特色,但是古巴比伦的数学同样有着吸引着我们的魅力,接下来我们一起来了解下古巴比伦的数学:考古学家在十九世纪上半叶于美索不达米亚挖掘出大约 50万块刻有楔形文字、跨跃巴比伦历史许多时期的泥书板。其中有近400块被鉴定为载有数字表和一批数学问题的纯数学书板,现在关于巴比伦的数学知识就源于分析这些原始文献。 算术古代巴比伦人是具有高度计算技巧的计算家,其计算程序是借助乘法表、倒数表、平方表、立方表等数表来实现的。巴比伦人书写数字的方法,更值得我们注意。他们引入了以60为基底的位值制(60进制),希腊人、欧洲人直到16世纪亦将这系统运用于数学计算和天文学计算中,直至现在60进制仍被应用于角度、时间等记录上。 代数巴比伦人有丰富的代数知识,许多泥书板中载有一次和二次方程的问题,他们解二次方程的过程与今天的配方法、公式法一致。此外,他们还讨论了某些三次方程和含多个未知量的线性方程组问题。 在1900B.C.1600B.C.年间的一块泥板上(普林顿 322号),记录了一个数表,经研究发现其中有两组数分别是边长为整数的直角三角形斜边边长和一个直角边边长,由此推出另一个直角边边长,亦即得出不定方程X2+Y2=Z2的整数解。 几何 巴比伦的几何学与实际测量是有密切的联系。他们已有相似三角形之对应边成比例的知识,会计算简单平面图形的面积和简单立体体积。 我们现在把圆周分为360等分,也应归功于古代巴比伦人。巴比伦几何学的主要特征更在于它的代数性质。例如,涉及平行于直角三角形一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论