高一《两角和与差的三角函数》教学设计_第1页
高一《两角和与差的三角函数》教学设计_第2页
高一《两角和与差的三角函数》教学设计_第3页
高一《两角和与差的三角函数》教学设计_第4页
高一《两角和与差的三角函数》教学设计_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 / 11高一两角和与差的三角函数教学设计高一两角和与差的三角函数教学设计【教材分析】本节是北师大版高中必修四第三章和两角和与差的正弦、余弦函数(书第 116 页-118 页内容) ,本节是在学生已经学习了任意角的三角函数和平面向量知识的基础上进一步研究两角和与差的三角函数与单角的三角函数关系,它既是三角函数和平面向量知识的延伸,又是后继内容两角和与差的正切公式、二倍角公式、半角公式的知识基础,起着承上启下的作用,对于三角函数式的化简、求值和三角恒等式的证明等有着重要的支撑。本课时主要讲授运用平面向量的数量积推导两角差的余弦公式以及两角和与差的正、余弦公式的运用。【学情分析】学生在本节之前已经学习了三角函数和平面向量这两章知识内容,这为本节课的学习作了很多的知识铺垫,学生也有了一定的数学推理能力和运算能力。本节教学内容需要学生已经具有单位圆中的任意角的三角概念和平面向量的数量积的表示等方面的知识储备,这将有利于进一步促进学生思维能力的发展和数学思想的形成。【课程资源】2 / 11高中数学北师大版必修四教材;多媒体投影仪【教学目标】1、掌握用向量方法推导两角差的余弦公式,通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础;2、让学生经历两角差的余弦公式的探索、发现过程,培养学生的动手实践、探索、研究能力.3、激发学生学习数学的兴趣和积极性,实事求是的科学学习态度和勇于创新的精神.【教学重点和难点】教学重点:两角和与差的余弦公式的推导及运用教学难点:向量法推导两角差的余弦公式及公式的灵活运用(设计依据:平面内两向量的数量积的两种形式的应用是本节课“两角和与差的余弦公式推导”的主要依据,在后继知识中也有广泛的应用,所以是本节的一个重点。又由于“两角和与差的余弦公式的推导和应用”对后几节内容能否掌握具有决定意义,在三角变换、三角恒等式的证明、三角函数式的化简求值等方面有着广泛的应用,因此也是本节的一个重点。由于其推导方法的特殊性和推导过程的复杂性,所以也是一个难点。 )3 / 11【教学方法】情景教学法;问题教学法;直观教学法;启发发现法。【学法指导】 、1、注意任意角的终边与单位圆交点坐标、平面向量的坐标的表示以及平面向量的数量积的两种表示形式的复习为两角差的余弦的推导做必要的准备,并让学生体会感悟向量在解决数学问题中的工具作用(体现学习过程中循序渐进,温故知新的认知规律。);2、突出诱导公式在三角函数名称变换中的作用以及变角思想让学生进一步体会数学的化归思想。3、让学生注意观察、对比两角和与差的余弦公式中正弦、余弦的顺序;角的顺序关系,培养学生的观察能力,并通过观察掌握公式的特点。【教学过程】教学流程为:创设情境-提出问题-探索尝试-启发引导-解决问题。(一)创设情境,揭示课题问题 1:同学们都知道, ,试问是否与相等?大家可以猜想是不是等于呢?下面我们就一起探讨两角差的余弦公式【设计意图】通过问题情境,自然流畅地提出问题,揭示课题,引发学生思考。使学生目标明确、迅速进入新知学习。4 / 11(二)问题探究,新知构建问题 2:你能用与的三角函数值表示出这两个角的终边与单位圆的交点 A 和 B 的坐标吗?怎样表示?【师生活动】画单位圆在直角坐标系中画出单位圆并作出与角的终边与单位圆的交点,引导学生利用三角函数值表示出交点坐标。【设计意图】通过复习使学生熟悉基础知识、特别是用角的正、余弦表示特殊点的坐标,为新课的推进做准备。问题 3:如何计算向量的数量积?【师生活动】引导学生观察是的夹角,引发学生对向量的思考,并及时启发学生复习向量的数量积的的两种表示。【设计意图】平复习面内两向量的数量积的几何法与代数法两种表示,从而使“两角差的余弦公式”的推证水到渠成。问题 4:计算 cos15和 cos75的值。分析:本题关键是将分成 45与 30的和或者分解成45与 15的差,再利用两角差的余弦公式即可求解。(学生板演)【师生活动】引导学生初步应用公式【设计意图】让学生熟练两角和与差的余弦公式,体会学生公式的实际应用价值,即:将非特殊角转化为特殊角5 / 11的和与差。并引发学生对两角和的余弦公式的推证兴趣。问题 7:同学们都知道诱导公式 cos(-)=cos,sin(-)=-sin,那么你会推导出cos(+)=?【师生活动】学生在老师的引导下自主推证两角和的余弦公式。【设计意图】让学生在学习中体会感受化归思想和类比思想在新知识发现中的作用。问题 8:同学们已学过 sin=cos(-),那么你会运用这个公式推证出 sin(-)和 sin(+)吗?【师生活动】教师引导学生推导公式。【设计意图】新知构建并体会转化思想的应用。问题 9:勾画书中两角和与差的三角函数公式并观察它们有什么特点?两角和与差的余弦:同名之积相加减,运算符号左右反cos(+)=coscos-sinsincos(-)=coscos+sinsin两角和与差的正弦:异名之积相加减,运算符号两相同sin(+)=sincos+cossin6 / 11sin(-)=sincos-cossin【师生活动】学生总结公式特点,学习小组交流,教师总结公式结构特征。【设计意图】让学生熟悉并掌握公式特征,如:教的顺序、函数的顺序、符号的规律。(三)知识应用,熟悉公式例 2、 (1)求 sin(-25)的值;(2)求 cos75cos105sin75sin105的值【设计意图】进一步熟悉诱导公式、两角和与差的三角函数公式的特点及正逆应用。例 3、已知求 sin(+) ,cos(-)的值。思维点拨:观察公式本题已知条件应先计算出cos,cos,再代入公式求值求 cos,cos 的值可借助于同角三角函数的平方关系,并注意 , 的取值范围来求解【设计意图】训练学生思维的有序性,例如在面对问题时,要注意先认真分析条件,明确使用公式时要有什么准备,准备工作怎么进行等。还要重视思维过程的表述,不能只看最后结果而不顾过程表述的准确性、简洁性等。在教学过程中,对例 3 适当延伸,目的要求学生正确使用分类讨论的思想方法,在表述上也对学生有了更高的要求。(四)自主探究,深化理解,拓展思维7 / 11变式训练 1:如何计算?【反思】本节学习的两角和与差的三角函数公式对任意角也成立吗?变式训练 2:例 3 中如果去掉条件,对结果和求解过程会有什么影响?变式训练 3:下列等式成立吗?cos(+)=cos+coscos(-)=cos-cossin(+)=sin+sinsin(-)=sin-sin【设计意图】通过变式训练与讨论进一步培养学生自主探究、合作学习交流的能力,以熟悉公式的变形运用并掌握两角和与差的正余弦公式的特征及应用。(五)小结反思,评价反馈1、本节学习的内容有哪些?2、两角和与差的三角函数公式有什么特点?运用两角和与差的三角函数公式可以解决哪些问题?3、你通过本节学习有哪些收获?【设计意图】进一步熟悉公式,加深学生对公式的理解和认识,培养学生的归纳总结能力和交流表达能力,让学生获得成功体验。(六)作业布置,练习巩固8 / 11书面:课本第 121 页 A 组 1 中间两题;2(2) (3) (4)B组 2(2)课后研究:课本第 118 页练习 5;【设计意图】巩固和理解知识,掌握两角和与差的三角函数公式。并引发学生对新知学习与探求的欲望和兴趣。【板书设计】两角和与差的正、余弦函数公式推导例 1例 2例 3【教后反思】本节教学设计首先通过问题情景阐述了两角差的余弦公式的产生背景,然后通过组织学生分析,讨论,并借助于单位圆中以原点为起点的两向量的数量积的两种表示,对9 / 11 大于 使,cos()给出证明,进而用向量知识探究任意角的情形。这些均体现了数学中从特殊到一般的思想方法,符合新课改的基本理念。同时,例题 1、2、3 由浅入深,让学生在问题中探究,在探究中建构新知。使学生在已有基础上,充分利用归纳、类比等方法激发学生进一步探究的欲望,建立 c 模型,有利于学生数学思维水平的提高,同时及时巩固,应用,拓展延伸,加强了学生对新知的掌握和灵活运用。给学生思维以适当的引导并不一定会降低学生思维的层次,反而能够提高思维的有效性,从而体现教师主导作用和学生主体作用的和谐统一。但课后发现小结仓促,如果能再引导学生自我小结、反思。可能会更好【关于教学设计的思考】1、本节课授课内容为普通高中课程标准实验教科书数学(4) (北师大版)第三章第一节,本节课的教学重点是:两角和与差的余弦公式的推导和应用是本节的又一个重点,也是本节的一个难点。所以这节课效果的好坏,体现在对这两点实现的程度上,因此,例题、练习、作业应用绕这两方面设计。而平面内两向量的数量积的两种形式的应用又是推导两角差的余弦公式的关键;因此在复习平面内两向量的数量积的两种形式是本节课必要的准备。2、本节课采用“创设情境-提出问题-探索尝试-10 / 11-启发引导-解决问题”的过程来实现教学目标。有利于知识产生、发展、解决这一认知过程的完整体现。在教学手段上使用多媒体技术,有效增加课堂容量。在教学过程环节,采用问题教学,再逐步展开的方式,能够充分调动学生的学习积极性,让学生的探索具有明确的目的性,减少盲目性。在利用平面内两向量的数量积的几何形式、代数形式建立等式,而得到两角差的余弦公式后,利用代数思想推出两角和的余弦公式,使学生进一步体会数学思想的深刻性。通过对公式的对比,可以加深学生对公式特征的印象,同时体会公式的线形美与对称美,给学生以美的陶冶。作业的布置中,突出了学生学习的个体差异现实,使学有余力的学生产生挑战的心理感受,也为下一节内容的学习做准备。3、数学的学习,主要是培养人的思维课程,强调思维构造,以问题解决为主的课程,既注重人的智慧获得,又注重人的情感发展,因而在教学中,应注意“完整的人”的数学教育,不搞“以智力开发为主的教育” ,使学生成为真正的人。因此在课堂教学中,教学设计应从学生出发,给学生

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论