




已阅读5页,还剩43页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
杭 州 电 子 科 技 大 学毕 业 设 计 ( 论 文 ) 外 文 文 献 翻 译毕 业 设 计 ( 论 文 ) 题 目 基于图像分析的虹膜区分系统开发翻译(1)题目 基于分区的 LBP 对虹膜特征提取后编码翻译(2)题目 基于 Gabor 滤波分析对不完整虹膜的识辨学 院专 业姓 名班 级学 号指导教师译文一基于分区的 LBP 对虹膜特征提取后编码 1摘要虹膜特征提取是虹膜辨认的关键因素。本论文提出一种新型的虹膜提取方法,基于局部二值化模式 LBP 的图像和分区域分析解码。首先,使用 LBP 使虹膜图片标准化,然后提取虹膜的特征值,基于局部解码方法,基于虹膜统计信息。最后完成虹膜辨识和分类,使用海明距离计算。实验结果显示该算法能得到比传统虹膜特征提取方法更高的识别效率,并对所提出方法的效率进行比较。关键词:虹膜识别 生物统计 局部二值模式 区域化解码 海明距离1 引言生物统计是一种有效的个人身份识别方法。由于人体有许多遗传的物理特征和行为特征能够被使用,比如脸,指纹,虹膜,血管,声音等等,具有独一无二的优势,稳定性和不受妨碍的特点。其中,虹膜识别身份是最可靠的方法之一,而且有更高的区别效率和更低的错误率。现在,虹膜研究正是集中在生物统计学方面。虹膜特征提取是区别分类不同身份的关键问题。近几年,大量的虹膜提取算法被提出。最前沿的自动虹膜识别系统由Daugman1,2 研究并发展。这使用一种复杂的 2D Gabor 滤波器来提取虹膜实质向量积。现在,这种方法已经成为许多商业系统的基本方法 1,2。Wildes 选择利用让同方向的波段通过的方法来分解虹膜信息原始数据,这是源于 Laplacian 的 Gaussian 过滤器思想 3 。Bole 和 Boashash 通过零交叉的 1D 滤波器,该滤波器把以眼睛中心为轴,提取同轴的同心圆虹膜信息,并表示出来 4。除此之外,相关的过滤器 5,结合了 Bayesian 方法 6,即关键局部变化 7和其他数学算法,都被用来提取虹膜的特点以及表现虹膜的模式特点。这些贡献导致了虹膜识别的高效识辨结果。然而,大多数方法都需要复杂的数学计算,并可能会需要长时间的时间来等待计算结果。为了加快进程和保持较高的识别率,局部二值化模式(LBP)被用到虹膜识别的算法中来 8。LBP, 作为一种完善的测量方法, 首先被用于图片局部的对比。与 Gabor 小波相比,LBP 对原始图像处理,能更快的提取图像特征,并且唯独空间更少,而且依然保持虹膜的本质信息 9-11。为了使用高效,更精确的识辨,本文改进了 LBP 特征提取算法。改论文提出局部分块解析的方法,是基于统计学信息得到虹膜特征,1 Yuqing He, Guangqin Feng, Yushi Hou, Li Li.2011 Seventh International Conference on Natural Computation特别对虹膜的 LBP 图像中,有丰富边缘纹理信息的虹膜位置,并采用经典的海明距离作判断依据。本文的内容组织结构如下:部分 2 解释了 LBP 操作如何对虹膜信息的收集和改进。部分 3,基于 LBP 处理后的图像,分块解码方法被用于题图虹膜特征。并给出了虹膜特征匹配方法。进一步的实验结果在部分 4 中体现并讨论。部分 5 得出研究的结论。2 图片的 LBP 数据收集和加工LBP 中有不同的参数被用于计算操作。采用 LBP,对图片进行标准化,得到虹膜纹理的主要信息。A. LBP 处理操作原始的 LBP 处理是一种对特征描述的有力的方法。第一步,把图片每个像素点周围 8 个像素点改变,使用周围 8 个像素与中心点对比的方法。周围的像素点记为点 g0g7,如果像素值大于中心值,则为 1,否则记为 0.然后,LBP 处理的结果是,把中心像素 gc 的值用周围 8 个像素的二进制 2n 数表示,(n 是 8 个近邻像素的有序排列向量下标),然后把结果转为 10 进制 10。图 1 是对基本的 LBP 算法解释说明。图 1 原始 LBP 过程Ojala et al.9提出关于 LBP 算法的一般性,多层次和多样本贡献的改进方法,像LBP(p,r ),这里 R 是中心像素点离附近近邻像素的距离半径,P 是近邻点的数量,对取周围像素点的位置点用线性插值算法。因此,LBP 获取的每个像素点是一个 P 位的二进制比特位。g c 表示中心点 C 的像素值,g p 反应了以 R 为半斤(R0),在园上取 P 个距离间隔相同点的像素值,形成一个对称圆的邻近像素采集点,像素下标分别记为 P=0,1,2, P-1.图 2 说明了对称的圆邻近像素点获取方式,另外,像素坐标不一定完全符合平均分布,大约可用插值算法估计取整。图 2 对称临近点分布通过二项式以 2P 次幂,对所有点展开,转为 10 进制。本文得到一个与原来像素值不同的值,这个值代表了局部图像纹理的空间结构如公式 1。(1)10, 0,)(,2(ppcRP xsgsLB从公式 1 中,能够发现一个有 16 个近邻像素点的 LBP 算法,得到的 LBP 处理后的像素值的灰度值范围是 0-exp(216-1),然后要将这个值归一化为 0-exp(2 8-1),未来方便与 LBP 图像比较,因为计算机中灰度级为 0-255.像素归一化转换公式 2 如下:(2)oldnewVaueValu1268这里,valuenew 表示转化后的新的像素值,valueold 是归一化前的像素值。B. 虹膜的 LBP 特征图像本文应用 LBP 算法操作,把虹膜图像标准化后得到 LBP 特征图像。给出灰度图像 I,对每个像素点按顺序光栅扫描:用 LBP 算法,对原始图像 I 的每个像素点,用公式 1 计算,因此,可以得到 LBP 处理后的图像 I 的 lbp。这里有 4 种不同 LBP参数选择处理后图像显示结果,LBP 8,1,LBP 8,2, LBP16,2,LBP 16,4.图 3 展示用不同LBP 参数得到的不同 LBP 图像。实验经验得到,增加近邻像素点的半径,图片特征的纹理特性差异随之增大。根据实验结果和分析,LBP 16,4 有更好的表现,在更高的 CRR 和更低的 EER 方面,要比普通的 LBP 参数更好,而且有最佳的适应性在描述虹膜特性方面。(a) 虹膜图像标准化(b) LBP8,1 特征图像(c) LBP8,2 特征图像(d) LBP16,2 特征图像(e) LBP16,4 特征图像图 3 不同参数对 LBP 计算影响C. LBP 的灰度范围不变性 从 LBP 操作的描述来看,知道 gp-gc 的差值不受光照强度影响,因此,不同的结合处是不受灰度范围变化的。成功的使图像灰度的差异保持不变,而不是使具体的值不变。LBP 因此操作有很好的灰度范围不变形性。LBP 16,4 被应用在虹膜图像和加强后的图像上,得到这两种不同的图像。图 4 展示了 LBP 的灰度范围不变性的实验结果。(a) 虹膜图像标准化(b) 对图(a)直方图统计增强(c) LBP16,4 对图(a)处理(d) LBP16,4 对图(b) 处理(e) 图 c,d 的差值图 4 LBP 的不受光照强度影响试验从图中,能发现对不同图片无论是否是主观还是客观的观察,LBP 操作都有很好的灰度规模的不变性。3. 分块特征解码以及匹配尽管 LBP 能够提取出虹膜纹理的主要信息,但这整个图像对匹配来说来时太大。本文采用对 LBP 图像分块的解码方法,得到更短的特征,其中用海明距离作为模式分类。A.分块特征解码 这虹膜图像被分成大小相等的矩形块,每个矩形表示一个局部区域。当前图像块的均值 和标准差 也通过公式 3 计算。本文比较整个图像和附近的块的均值和标准差。另外,在图像被分成多块后,所有的块按照从顶到底,从左到右的顺序排列。BLOCKi 表示 Ith 个块,相应的四个解码为 , , , 。 ,1ibt2i3ibt4i1ibt记录第 ith 个块的局部信息和全局信息的关系, , ,记录邻近块的局部信2ibt 3ibt4i息 BLOCKi 和 BLOCKi+1. 记 0 表示前者小于后者,否则记为。从高到低,从左到右,从 BLOCKi 到 BLOCKi+1 进行编码(假设一共有 N 块)并串联起来,就得到二进制的虹膜码,能够用来区分纹理图片的特征。图 5 展示虹膜编码过程。图 5 产生虹膜编码B.虹膜码匹配。结合 LBP 图像和分块的编码操作,就可以得到二进制的虹膜码,能够有效的用来表示图像间的关系。本文把这个编码作为虹膜的特征。海明距离用来对不同的虹膜码进行模式分类。选择海明距离的原因是该分类方法较为方便,实用,而且充分确保虹膜识别的分类匹配要求。假设虹膜码的长度是 L,A 和 B 的标准化的海明距离 H 可以表示为公式 3:(3)LjjBH1Aj 和 Bj 表示在下标位置 Jth 处,A 和 B 对应的码, 表示异或操所。4 实验结果以及分析 本文中,虹膜特征码得到方式为,先对虹膜图片用 LBP16,4 处理,再分为 88个块。根据该方法,本文得到实验区分结果。A 虹膜数据设置 所提供的图像参数来源自中国科学技术协会(CASIA)虹膜图像数据库。版本号为 3.0 和 1.0.下载的虹膜图像标准为 51264 像素值,为了消除眼睑和睫毛的噪声干扰,只用右上角的部分截取作为有效的特征范围来提取和识别。虹膜样本和标准化过程在图 6 中给出。图 6 CASIA 图像图片标准化B 实验结果用前文提出的方法计算,在 CASIA 的 3.0 版本数据库基础上,用典型的计算参数作为正确识别率(CRR ),容错率(FAR ),错误拒绝率( FRR),对比错误率(EER )。图 7 显示用海明距离分布在 intra-class 和 inter-class 的比较。能看到较理想的结果,用提出的方法能区分出两者不同,尽管有一部分较小的重叠区域。从分布图中,我么就可以确定阈值。图 7 海明距离区分 intra-class 和 inter-class用所提出的方法,根据 CASIA3.0 数据库,计算 ROCs(receive operating curve接受曲线的结果在图呈现。从数据中,得到该算法的 EER。实验结果显示的算法在分析识辨虹膜上是有实际效用和高效的。图 8 不同 CASIA 数据实验的 ROC 曲线在 CASIA3.0 数据库的实验数据中,当阈值选择为 0.223-0.238 时,所提出的识别绩效能达到 99.27%,意味着该阈值的选择范围较大。从对比的角度看,本文列出不同计算方法,基于 CASIA3.0,其中有 Hugo Proenca13的基于熵的编码策略,IITK14的 SURF 算法,Byung Jun Kang 15的 fuzzy DOG 方法,以及 IIT-D16的 fusion算法。可以用来和本文的实验结果比较,在同样使用 CASIA3.0 的数据条件下。在表1 中列出了不同方法的 CRR 和 EER。可以清楚看到本文提出的方法在实际效果上要比其他翻案更好,在更高的效率和更低的 EER 上尤为突出。表 1 不同方法的辨识精确度对比本文把 CASIA3.0 的同一组样本图片分别分为训练集和测试集,使用 5 次折叠交叉验证该方法的鲁棒性。最后的测试结果得到, CRR 为 99.62%。本实验中也用本算法计算 CASIA3.0 的其他数据。当阈值选为 0.227-0.234 时,识辨效率可以达到99.6%。作为比较,2D 虹膜算法,Daumans 1和分块编码 12,也被用来在同一数据集上计算。 显而易见的是,本方法可以得到比分块编码方法更好的绩效,在达到Daugmans 的结果条件下。除此之外,在 CASIA1.0 的数据集上,列出了用 LBP 方法 8和 Tans 方法 4得到的结果比较。从数据中可以发现,本文所提的方法更优于LBP 方法和 Tans 方法,而且也验证了效率。表 2 中举出了不同方法的 CRR 和EER。表 2 不同方法的辨识精确度对比5 结论本文提出一种新的虹膜识辨方法,基于对虹膜特征提取使用 LBP 和分块编码方式。LBP 16,4 被用于表现虹膜图片为纹理的鲁棒性,88 的分块区域用来得到每个块的特征编码。用海明距离计算待测试虹膜图片和各种训练图片分类的距离,得到他们的相似性。 实验数据都来自于 CASIA 虹膜数据库,并且本方法也证明了在虹膜特征提取上,拥有较高的 CRR 和较低的 EER 的优势,在分类中有较强的避免噪声和阈值范围广的特点。在未来的研究中,本文需要用更多的数据样本测试本算法,而且改进算法效率。6 致谢本项目由中国科学协会支持(No.60905012,60572058 ),图像技术开放实验室,中国教育部(No.2010OEIOF04)。参考文献1 J. Daugman, “High confidence visual recognition of persons by a test of statistical independence,” IEEE Trans. PAMI, 15(11), 1148-1161(1993). 2 J. Daugman, “How Iris Recognition Works,” IEEE Trans. Circuits and System for Video Technology, 14(1), 21-30(2004). 3 R. Wildes, “Iris Recognition: An Emerging Biometric Technology,” Proc. of the IEEE, 85(9), 1348-1363(1997). 4 W.W.Boles, B. Boashash, “A Human Identification Technique Using Images of the Iris and WaveletTransform,” IEEE Trans. Signal Processing, 46(4), 1185-1188(1998). 5 B.V.K. Vijaya Kumar, C. Xie and J. Thornton, “Iris verification using correlation filters,” Proc. of 4th Intl. Conf. on Audio- and Video-Based Biometric Person Authentication (AVBPA), LCNS 2688, pp.697-705(2003) 6 J. Thornton, M. Savvides and B.V.K. Vijaya Kumar, “A unified Bayesianapproach to deformed pattern matching of iris images,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 29, 596-606(2007) 7 Li Ma, Tieniu Tan, Yunhong Wang, Dexin Zhang, “Efficient Iris recognition by Characterizing Key Local Variations,” IEEE Trans. Image Processing, 13(6), 739-750(2004). 8 Zhenan Sun, Tieniu Tan, Xianchao Qiu, “Graph Matching Iris Image Blocks with Local Binary Patterns”, Proc. of the International Conference on Biometrics, 366-372(2005). 9 T. Ojala, M. Pietikainen and T. Maenpaa, “Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns,” IEEE Trans. Pattern Analysis and Machine Intelligence, 24(7), 971-987(2002)10 Shihu Zhu, Zhen Song, Jufu Feng, “Face recognition using local binary patterns with image Euclidean distance,” Proc. of SPIE 6790, (2007). 11 Yuchun Fang, Zhan Wang, “Improving LBP features for gender classification,” Proc. of the 2008 International Conference on Wavelet Analysis and Pattern Recognition, 373-377(2008). 12 Yuan Weiqi, Xu Lu, Lin Zhonghua, “An Iris Block-Encoding Method Based on Statistic of Local Information,” Acta Optica Sinica, 27(11), 2047-2052(2007).13 Hugo Proena, Lus A. Alexandre, “Iris Recognition: An Entropy-Based Coding Strategy robust to noisy imaging environments”, ISVC 2007, Part I, LNCS 4841, Springer-Verlag Berlin Heidelberg 2007, 621-632(2007). 14 Hunny Mehrotra, Banshidhar Majhi, Phalguni Gupta,” Annular Iris Recognition Using SURF, PReMI 2009, LNCS 5909, Springer-Verlag Berlin Heidelberg 2009, 464-469(2009). 15 Byung Jun Kang, Kang Ryoung Park, Jang-Hee Yoo, Kiyoung Moon, “Fuzzy difference-of-Gaussianbased iris recognition method for noisy iris images”, Optical Engineering, 49(6), 067001-110( 2010); 16 Tae-Hong Min, Rae-Hong Park, “Comparison of eyelid and eyelash detection algorithms for performance improvement of iris recognition”, ICIP 2008, 257-260(2008).外文原文一Iris feature extraction method based on LBP and chunked encoding AbstractIris feature extraction is a key issue in iris recognition. This paper proposes a novel iris feature extraction method based on local binary pattern (LBP) images and the chunked encoding method. Firstly it applies the LBP to the normalized iris image and obtains the iris LBP image, then extracts the iriss feature via the chunked encoding method based on the iris statistical information. Finally it completes the iris recognition and classification using Hamming distance. Experimental results showed that this algorithm can get higher recognition rate than the traditional iris feature extraction method, which demonstrated the efficiency of the proposed method. Keywords: iris recognition; biometrics; local binary pattern; chunked encoding; hamming distance .I. INTRODUCTION Biometrics is an efficient personal identification method. There are a lot of inherent physical characteristics and behavioral characteristics can be used, such as face, fingerprint, iris, vein, voice, etc. With the advantages of uniqueness, stable and nonintrusive, iris recognition is the most reliable method which has higher recognition rate and lower equal error rate.Now iris recognition has become the research focus in the biometrics. Iris feature extraction is a key issue in the recognition algorithm. Plenty of iris feature extraction algorithms have been proposed in recent years. The pioneer automatic iris recognition system was developed by Daugman 1, 2.It extracts the iris oriented-based texture features with a complex valued 2D Gabor wavelet. Now this method became the basis of many core systems 1, 2. Other feature extraction methods were proposed to achieve more compacted codes. Wildes chose to make use of an isotropic band pass decomposition derived from the application of Laplacian of Gaussian filters to the iris information3.Bole and Boashash extract and represent the feature of iris pattern by the zero-crossing of 1D wavelet transform of the concentric circles on the iris 4. Besides these, correlation filters5, unified the Bayesian method 6 key local variations 7 and other algorithms are introduced to extract the iris features and represent the iris patterns.These all lead to an efficient recognition. Most of the methods need complicated mathematical calculations, and they may take longer times to get results. For speeding up the processing and keeping high recognition rate, local binary pattern (LBP) of the iris blocks is used in the recognition algorithm 8. LBP was firstly introduced as a complementary measure for local image contrast. Compared with Gabor wavelets, the LBP features can be extracted faster in a single scan through the raw image and lie in a lower dimensional space, while still retaining iris texture information 9-11.To implement an efficient and more accurate recognition, here we modify the LBP feature extraction method. This paper proposes a chunked encoding method based on statistical information to get the iris feature code from the iris LBP image which can describe the rich texture feature of iris, and perform classification using the Haing distance. The remainder of this paper is organized as follows: Section 2 illustrates the LBP operator selection and processing results in iris images. In section 3, based on the LBP image, a chunked encoding method is used to extract iris feature. It also gives details the iris feature matching method. Extensive experimental results are presented and discussed in Section 4 prior to conclusions in Section 5.II. LBP SELECTION AND IMAGE PROCESSING There are different parameters that are used for the LBP operator. Applying the LBP on a normalized iris can extract the main iris textures. A . LBP Operator The original LBP operator is a powerful means of texture description. The first incarnation of the operator worked with the eight-neighbors of a pixel, using the value of the center pixel as a threshold. The neighborhood pixels g0-g7 are converted to 0 if their gray levels are smaller than that of the center gc, or to 1in other case. Then an LBP code for the center pixel gc is produced by multiplying the converted neighborhood pixel values with weights 2n given to the corresponding pixels (n is the index of the eight neighbors, respectively), and summing up the result 10. See Figure 1 for an illustration of the basic LBP operator.Figure 1. The basic LBP operatorOjala et al. 9 have generalized the above basic LBP operator to multi-scale and multi-sampling cases denoted as LBP,R, where R is the radius of neighborhoods, P is the number of neighborhoods and bilinear interpolation is adopted to calculate the grey level of each neighbor. Thus the LBP code of each pixel contains P bits. Let gc be the gray value of the center pixel C, and gp correspond to the gray values of P equally spaced pixels on a circle of radius R(R0) that form a circularly symmetric neighbor set, where p=0,1,2,P-1.Figure2 illustrates circularly symmetric neighbors which do not fall exactly in the center of pixels are estimated by interpolation.Figure 2. Circularly symmetric neighbor sets for different(P,R)By assigning a binomial factor 2P for each sign s(gp-gc), we get a unique number that characterizes the spatial structure of the local image texture: )1(0,)(,2(10,ppcRP xsgsLBFrom equation (1) we can see that LBP operator of 16-neighboehood gets LBP images whose gray value range is 0(216-1), and uniformly transform it to 0(28 -1)linearly for convenient comparison with other LBP images. The transform process of every pixel in iris image is showed below: )2(1268oldnewVaueValuWhere new Value is the new gray value of the pixel after transformation, and old Value is the old gray value before transformation.B. Iris LBP Feature Image Here we apply the LBP operator to the normalized iris image and get the LBP feature image. Given a grayscale image I, scan every pixel in a raster order: the LBP code for each pixel of image I can be calculated according to Equation (1), therefore the resulted LBP image ILBP of image I can be obtained. Four LBP operators are used in the images, LBP8,1, LBP8,2, LBP16,2 and LBP16,4. Figure 3 shows the different feature images of different LBP operators. The experiment showed that, with increasing radius of the neighborhoods, the texture scale of feature image increased. According to the experiment result and analysis, the LBP16,4 feature had a better performance with higher CRR and lower EER than other LBP operators performance, which was the most appropriate to describe the iris texture features.Figure 3. Normalize iris image and its different LBP feature imagesC. Gray-Scale Invariance Of LBP From the description of LBP operator, we know that signed difference gp-gc is not affected by the changes in mean luminance; hence, the joint difference distribution is invariant against gray-scale shifts. We achieve invariance with respect to the scaling of the gray scale by considering just the signs of the differences instead of their exact values, so LBP operator have good gray-scale invariance. LBP16,4 operator is applied on both the iris image and its enhancement image, and we get their difference image. Figure 4 shows the experimental results of LBPs gray-scale invariance. From the figure, we can see that no matter if we observe subjectively or objectively the difference image, the LBP operator has good gray-scale invariance.Figure 4. LBP operators gray-scale invariance of different luminance image Relationship between ith blocks local information and global information,biti3,biti4 record the relationship between the local information of adjacent blocks BLOCK i and BLOCK i+1. 0 is set to represent the bit when the former value is less than the latter value, otherwise, 1 is set. From top to bottom, from left to right, all encoding from BLOCK1 to BLOCK n (assuming there are n blocks in all) are cascaded together, then the binary iris code is obtained which can represent distinguishing features of the texture image, denoted by bit11,bit12,bit13,bit14 , bitn1,bitn2,bitn3,bitn4. Figure 5 shows the process of how the iris code is produced. Figure 5. Generation of the iris codeD. Iris Code Matching Combining with the LBP image and chunked coding operation, the binary iris code is obtained which can effectively represent the corresponding relationship within the image. We take them as the iris feature. Hamming distance can be used for pattern classification of different iris codes. Hamming distance was chosen because this classification method is simple, practical, and sufficient to ensure the pattern matching requirements of iris recognition. Assuming the length of iris code is L, the normalized Hamming distance H between iris codes A and B can be expressed as: )3(1LjjjBAHWhere Aj and Bj respectively represent the code in the jth place of the iris codes A and B, “ ”denotes XOR operation. III. Experimental result and analysisIn this paper, iriss feature code is extracted from iriss LBP16, 4 image and the block size 88 to represent its feature. Using this method, we conducted the recognition experiments. A. Iris Data Set The performance of proposed algorithms was measured by using the Chinese Academy of Sciences (CASIA) iris image Version 3.0 and Version 1.0 database. In this paper, the located iris image is normalized to 51264 pixels, and in order to eliminate the noise of eyelids and eyelashes, only the quarter in the top right corner of iris image is intercepted as the effective region for feature extraction and recognition. The iris samples and the normalized part are shown in Figure 6.Figure 6. Iris images in CASIA data
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小熊和森林的童话作文7篇
- 山西省部分学校2024-2025学年高二上学期10月月考地理试题(A卷)(解析版)
- 江西省上进联考2025-2026学年高三上学期7月第一次大联考地理试题(解析版)
- 我的第一次旅行经历写物6篇范文
- 客户数据安全守护承诺书3篇范文
- 2025年安徽白帝集团有限公司及所属子公司春季招聘8人模拟试卷附答案详解(典型题)
- 2025昆明市官渡区司法局辅助人员招聘(1人)考前自测高频考点模拟试题及答案详解(网校专用)
- 2025年广东佛山市南海区桂城街道公开招聘辅警1人模拟试卷附答案详解(模拟题)
- 企业文化建设方案模板企业价值观驱动
- 2025广州银行经营机构人才招聘考前自测高频考点模拟试题有完整答案详解
- 办公区设施维护表
- 2025-2026学年苏教版(2024)小学科学二年级上册教学计划及进度表
- 线粒体基因糖尿病讲解
- 2024年注册安全工程师考试化工(初级)安全生产实务试题及答案
- 2025年度环评文件技术复核服务方案投标文件(技术方案)
- 急性胰腺炎的中医护理
- 2025至2030全球及中国汽油汽车喷油器行业项目调研及市场前景预测评估报告
- 老年慢性病护理
- 肺结核患儿的护理
- 冬季风力发电机组安装施工安全技术措施
- 瓷砖搬运培训课件
评论
0/150
提交评论