




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于以太网的高精度时间同步实时数控系统摘要:本文提出了一种时间同步的方法来实现高精度的分布式时钟,基于实时以太网的电脑数控(CNC)系统的环型拓扑。建议同步方法采用频率补偿和对等透明时钟机制,利用一个实时的同步协议成实时嵌入的时间同步通信周期。一个最佳的比例积分控制器,然后设计的频率补偿基于模型和分析机制时间同步的过程。此外,硬件这段时间同步策略的实施进行说明。最后,一个实时的基于以太网的数控系统具有环形拓扑的建立和实验进行验证的性能提出同步方案。实验结果表明,提出的时间同步方法实现同步精度高。峰 - 峰抖动测量,只有一个和四个波动,分别为 42.42 和 95.5 纳秒。关键词:网络化数控系统;时间同步实时以太网;频率补偿;透明时钟1、引言随着工业的不断提高自动化和现代化的制造系统,有应用共享数据的不断增长的需求网络控制系统 1,2 。例如,在应用程序中与大量的传感器,致动器或控制器,如计算机数值控制(CNC)加工中心,柔性制造系统,印刷机器和机器人 3-5,实时控制网络可以被用于执行信息分布式节点之间的交流。而不是传统的集中制造系统直接配线设备连接在一起,这些基于网络的系统提供了多种优势,如可扩展性,可靠性,和远程控制能力 6。另外,它们减少了配线连接的问题,并传输长度的限制和减少安装,重新配置,维护时间和成本 5。这些类型的计算机集成制造系统被称为网络化数控系统,其中的功能模块,如传感器,伺服驱动器,以及数字控制(NC)电脑分布通信网络互连 7。在现场级网络化数控系统,大量的命令和反馈信息定期在分布式节点之间传输高频率。因此,重要和具有挑战性在这些应用中的问题是如何控制反馈信息是准确和即时传输,以及对每个单独的传感器或执行器实现同步采样或同步致动 1。要制定出这些问题,许多不同的实时控制网络,如控制区网络,Profibus 和串行实时通信规范,已在网络数控系统在过去的十年 8-10。然而,随着网络数控系统的快速发展,带宽将成为这些领域的瓶颈巴士提供高速通信highaccuracy 多轴协调控制。因此,实时以太网(RTE)作为替代品已经出现网络数控系统的信息交流由于其低廉的价格,确定性通信,和高传输速度 7,11,12 。在实时以太网系统,必须在每个节点的本地时钟一些方法来同步管理通信周期和消息调度策略 13。主要有以下三个方法同步是艺术的研究:网络时间的状态协议(NTP) ,全球定位系统(GPS ) ,IEEE1588 标准 14。NTP 是最流行的协议,用于 NTP 是最流行的协议,用于广域网应用工作或局域网络,以确保同步精度在订单上的毫秒 15,16 。然而,这是在 RTE 的数控系统作为网络不足其发送周期为几毫秒。对全球定位系统,工作微秒 14的顺序,供资由美国能源部和控制防御。但是,一个 GPS 接收器,需要在每个节点在广泛和明确外,应安装环境,因为 GPS 信号很容易受阻建筑和金属 12。第一个 IEEE 1588 是在 2002 年存在了第一个 IEEE 1588 标准化是标准化在2002 年和指定一个精确时间协议,具有高同步精度在次微秒的范围内,其最新的版本是 IEEE 1588-2008 17,它定义了一个透明的时钟,来解决这个问题的指数积累的时间同步误差在级联网络。基本思想 IEEE 1588 是使用时间戳里面包交换时节点之间的信息。最近,一些研究人员已经提出并论证 IEEE1588 的时间同步解决方案,为网络数控系统 12。提出了一种时间为分层的真实timenetworked 的数控系统基于以太网 /互联网的同步策略。采用 IEEE 1588 协议,以满足硬实时任务的要求,同时结合 GPS 和 NTP 解决同步之间的的 NC 服务器和数控核心问题的计算机。然后,基于 IEEE 1588 时间同步和被认为是实时通信在 18。考虑到要求在联网的数控高精度同步系统,一个集总的基于帧的实时通信用硬件实现的协议IEEE 1588 协议中引入 19。上述研究结果给了我们一个明确的说法在网络的不同的时间同步方法数控系统。然而,频率调整从时钟和时间同步级联网络不被认为在这些同步方法,这两个方面也很重要。网络数控系统的同步。究其原因是采样周期内的位置,速度,由从属时钟驱动电流回路,和频率它们之间的差异,最终会影响精度 the motion 20。此外,线型或环型拓扑外地一级的网络是常用的数控系统由于其布线成本低。因此,本级联交换机引入的误差积累这些网络的拓扑结构,应考虑在同步的方法。在本文中,我们提出了一种基于 IEEE 1588 的时间同步计划,以实现高精度分布式在现场级网络数控的时钟系统,这是用来定期安排所有任务并进行同步采样或驱动之间的分布式轴。不像我们以前的工作 21异步采样或驱动工作时间同步方案,而不是由在一个控制器中的补偿算法。本文作出以下贡献:首先,建议同步方法采用频率补偿和对等透明时钟机制,从而实现高精度在网络数控系统与分布式时钟环形拓扑结构。此外,实际的时间同步协议被设计为将同步到实时通信周期的方法。此外,一个最佳的比例 - 积分(PI )的时钟伺服要取得同步精度高基于该模型和分析的时间同步的过程。事实证明,最优 PI 时钟伺服 can give 的最小积分平方误差(ISE )的性能指标。该同步算法是很好地适应所有基于 IEEE 1588 的实现,特别是对基于硬件的实现.第二,我们以前的工作 22的基础上,我们给出了硬件实现的时间同步策略,从而实现实时同步协议和主要任务数控系统,通过数字信号处理器(DSP) ,现场可编程门阵列(FPGA ) ,和实时以太网技术。在发达的实施,一种改进的媒体访问控制器(MAC)协议结合的运动的一些功能控制在一个 FPGA 芯片。此外,分布式节点在修改后的 MAC 协议,通过同步“飞”的时间戳,以节省网络带宽和处理时间。三,实验平台使用的实时以太网环形拓扑的建立和实验进行验证的有效性所提出的同步方法。实验结果表明,提出的同步计划实现同步精度高现场级网络化数控系统。峰峰值抖动测量只有 42.42 和 95.5 纳秒一和四啤酒花,分别。本文的其余部分组织如下:第 2 节是专门配方的问题。在第 3 节,我们提出了一个同步方法解决了问题,网络的时间同步数控系统。然后,在硬件实现提出的时间同步策略第 4 节中描述。几个实验 conducted conducted 的第 5 节。在最后一节,结论和未来研究的角度。2、时间同步的问题基于 RTE-数控系统如上文 7中,网络结构在分层实时网络数控系统有三个不同的级别,即非实时的网路,软实时以太网,以及硬实时以太网。这分类的功能,以及基于在网络化数控系统的信号特征工业以太网的透明模型。该这项工作的主要目的集中的时间同步在现场级联网的数控系统,这表明硬实时以太网。该网络用于通信的物理信号,如位置,速度,电流,由装置网络编码的信息,其特点包括线型或环型拓扑结构网络是常用的架构。命令和反馈信息定期分布式节点之间数据传输的大小是小的,但可能必佳的发送频率 23。现场级的系统架构联网的数控系统示于图中。 一个主从系统架构具有环形拓扑在数字通信系统。 CNC system controls 整个数字通信,由插补,位置控制,PLC,NC 代码解释,刀具补偿,运动控制等 7。伺服和 I / O 现场设备。在网络化数控系统,设备分布,并有自己的处理单元和定时功能。因此,同步所有设备是非常重要的。高精度的主要有三个问题,同步,它可以被描述如下:1 在数控系统中的抖动:数控系统是基于在标准 PC 上使用一个网络接口卡(NIC)来实现信息交流所述现场设备。当数控系统的选择的主节点中的时间同步,同步精度主要是确定其可靠性低的时间戳。即使一个实时操作系统是使用的时间戳的精度是微秒的顺序 12。2 时间同步算法分析与设计:这个问题,包括如何构建从时钟的频率调整如何建模和算法驱动设计这些从属时钟。3 同步误差积累在 RTE 网络,环型拓扑:1588 - 2008 已经定义了一个透明时钟来解决同步问题的指数积累级联网络错误。然而,离开的方法整合透明打开实时通信时钟机制。如果 NIC 有足够的缓冲区的微控制器计算能力,因此,它可以接收从数控系统的命令和完成一些任务,如精细的内插时,位置环路,与现场设备和信息交流。然后,第一个问题很容易通过设置处理作为主节点的网卡,因为基于硬件的时间戳,可实现在所有的网络节点。将要描述的网卡和硬件实现的后来。因此,时间同步方法在下一节中提出处理余下的两个问题,实现高同步基于RTE-数控系统的精度。High-precision time synchronization in real-timeEthernet-based CNC systemsXing Xu Zhenjiang Xing Xinhua Wu Xiang yang ZhuReceived: 13 November 2011 / Accepted: 17 May 2012 / Published online: 1 June 2012 Springer-Versa London Limited 2012Abstract: This paper presents a time synchronization method to achieve high-precision distributed clocks in real-time Ethernet-based computer numerical control (CNC) systems with a ring topology. The proposed synchronization method adopts the frequency compensation and peer-to-peer transparent clock mechanisms, and utilizes a real-time synchronization protocol to embed the time synchronization into the real-time communication cycle. An optimal proportional-integral controller is then designed for the frequency compensation mechanism based on the model and analysis of the time synchronization process. Besides, the hardware implementation of this time synchronization strategy is described. Finally, a real time Ethernet-based CNC system with a ring topology is built, and experiments are conducted to verify the performance of the presented synchronization scheme. The experimental results demonstrate that the proposed time synchronization method achieves high synchronization precision. The peak-to-peak jitters are measured to be only 42.42 and 95.5 ns for one and four hops, respectively.Keywords: Networked CNC system Real-time Ethernet Time synchronization Frequency compensation Transparent clock1 IntroductionAlong with the continuous improvement in industrial automation and modern manufacturing systems, there are increasing demands for applying a shared data network in control systems 1, 2. For instance, in applications with a large number of sensors, actuators or controllers, such as computer numerical control (CNC) machining centers, flexible manufacturing systems, printing machines and robots 35, real-time control networks can be used to perform information exchanges among distributed nodes. Rather than traditional centralized manufacturing systems with directly wiring devices together, these network-based systems provide several advantages such as scalability, reliability, and remote-control capability 6. In addition, they reduce the problems of wiring connection and transmit length limitation and decrease installation, reconfiguration, and maintenance time and costs 5.These types of computer-integrated manufacturing systems are called networked CNC systems, where functional modules such as sensors, servo drivers, and the numerical control (NC) computers are distributed and interconnected by communication networks 7. In the field level of networked CNC systems, a large amount of command and feedback messages are periodically transmitted among distributed nodes at a high frequency. Hence, the important and challenging issues in these applications are how the control and feedback information is accurately and instantly transmitted and how each individual sensor or actuator realizes the synchronous sampling or the synchronous actuation 1. To work out these problems, many different real-time control networks, like control area network, Provirus, and serial real-time communication specification, have been presented in networked CNC systems during the past decade 3, 810. However, with the rapid development of networked CNC systems, the bandwidth becomes the bottleneck of these field buses to provide high-speed communication for high accuracy militaries coordinated control. Thus, the real time Ethernet (RTE) has emerged as an alternative for information exchanges in networked CNC systems because of its low price, deterministic communication, and high transmission speed 7, 11, and 12. In real-time Ethernet systems, the local clock in each node must be synchronized by some methods to manage both the communication cycle and the message scheduling 13. The following three main methods of synchronization are the state of the art of the research: Network Time Protocol (NTP), Global Positioning System (GPS), and IEEE Standard 1588 14. NTP is one of the most popular protocols used for the applications working on wide area networks or local area networks, ensuring synchronization accuracy on the order of milliseconds 15, 16. However, it is insufficient in the RTE networks of CNC systems as its transmission cycle is several milliseconds. The GPS, working on the order of microseconds 14, is funded and controlled by the United States Department of Defense. But a GPS receiver is needed at each node and should be installed in the wide and clear-outside environment because GPS signals are easily obstructed by building and metal 12.The first IEEE 1588 is standardized in 2002 and specifies a precision time protocol, with high synchronization accuracy in the sub microsecond range, and its latest version is IEEE 15882008 17, which defines a transparent clock to solve the problem of the exponential accumulation of time synchronization error in cascaded networks. The fundamental idea of the IEEE 1588 is to use timestamps inside packets when exchanging information between nodes. Recently, some researchers have proposed and demonstrated IEEE1588-based time synchronization solutions for the networked CNC systems. Zhang et al. 12 proposed a time synchronization strategy for the hierarchical real-time networked CNC system based on Ethernet/Internet. The IEEE 1588 protocol was adopted to meet the requirement of the hard real-time tasks while it combined the GPS and the NTP to solve the synchronization issue between the NC server and the NC core computer. Then, the IEEE 1588-based time synchronization and the real-time communication were considered together in 18. Considering the requirement of high-precision synchronization in the networked CNCsystem, a lumped frame-based real-time communication protocol with a hardware implementation of the IEEE 1588 protocol was introduced in 19. The abovementioned research results gave us a clear view of various time synchronization methods in the networked CNC systems. However, the frequency adjustment of slave clocks and time synchronization in cascaded networks were not considered in these synchronization methods, and these two aspects are also important for synchronization in networked CNC systems. The reason is that the sampling periods of the position, velocity, and current loops are driven by the slave clocks, and the frequency differences among them will ultimately affect the motion accuracy 20. Besides, the line or ring topology is commonly used in the field level of networkedCNC systems due to its low cabling cost. Hence, the error accumulation introduced by cascaded switches of these network topologies should be considered in the synchronization method.In this paper, we present an IEEE 1588-based time synchronization scheme to realize high-precision distributed clocks in the field level of networked CNC systems, which are used to schedule all periodic tasks and perform the synchronous sampling or actuation among distributed axes. Unlike our previous work 21, the asynchronous sampling or actuation is worked out by a time synchronization scheme rather than by a compensation algorithm in a controller. This paper has made the following contributions:First, the proposed synchronization method adopts the frequency compensation and peer-to-peer transparent clock mechanisms, thus achieving high-precision distributed clocks in networked CNC systems with a ring topology. Also, a real-time synchronization protocol is designed to incorporate the synchronization method into the real-time communication cycle. Moreover, an optimal proportional-integral (PI) clock servo is presented to obtain high synchronization accuracy based on the model and analysis of the time synchronization process. It is proven that the optimal PI clockservo can give the minimum integral square error (ISE) performance index. This synchronization algorithm is well adapted to all IEEE 1588-based implementations, especially for the hardware-based implementations. Second, on the basis of our previous work 22, we give a hardware implementation of the time synchronization strategy, which accomplishes the real-time synchronization protocol and the main tasks of the CNC system through digital signal processor (DSP), field-programmable gate array (FPGA), and real-time Ethernet technologies. In the developed implementation, a modified media access controller (MAC) protocol is combined with some functionalities of motion control in one FPGA chip. Also, the distributed nodes are synchronized by means of the modified MAC protocol with “on-the-fly” time stamping, to save network bandwidth and processing time.Third, an experimental platform using a real-time Ethernet network with a ring topology is built, and experiments are conducted to validate the effectiveness of the presented synchronization method. The experimental results demonstrate that the proposed synchronization scheme achieves high synchronization precision in the field level of networked CNC systems. The peak-to peak jitters are measured to be only 42.42 and 95.5 ns for one and four hops, respectively. The remainder of this paper is organized as follows: Section 2 is devoted to the problem formulation. In Section 3, we propose a synchronization method to solve the problems in the time synchronization of networked CNC systems. Then, the hardware implementation of the presented time synchronization strategy is described in Section 4. Several experiments are conducted in Section 5. In the last section, a conclusion and future research perspective are given.2 Problems in time synchronization of RTE-based CNC systems As mentioned in 7, the network architecture in a hierarchical real-time networked CNC system has three different levels, namely, non-real-time Internet, soft real-time Ethernet, and hard real-time Ethernet. This classification is based on the functionality as well as signal characteristics in the networked CNC system with the transparent model of industrial Ethernet. The main purpose of this work focuses on the time synchronization in the field level of the networked CNC system, which indicates the hard real-time Ethernet. This network is used to communicate physical signals, such as position, velocity, and current, by the means of network coding, and its characteristics including the line or ring topology is commonly used as the network architecture. Command and feedback messages are periodically transmitted among distributed nodes; data sizes are small, but the transmission frequency may be high 23.The system architecture of the field level of the networked CNC system is shown in Fig. 1. Master slave system architecture with a ring topology is used in the digital communication system. The CNC system controls the entire digital communication and consists of interpolation, position control, PLC, NC code interpretation, tool compensation, motion control, etc. 7. Servo and I/O are the field devices. In the networked CNC system, devices are distributed and have their own processing units and timing functions. Hence, synchronization of all devices is extremely important.There are three main problems to high-precision synchronization, which can be described as follows:1. Jitter in the CNC system: The CN
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司激励士气活动方案
- 公司纪律教育月活动方案
- 公司新人活动方案
- 公司看板策划方案
- 公司文化墙活动策划方案
- 公司母亲节趣味活动方案
- 公司早茶活动策划方案
- 公司教师节感恩活动方案
- 公司环保走秀活动方案
- 公司摄影收集活动方案
- 中学体育七年级《篮球基本技巧》说课课件
- 实战-数字化转型工作手册 两份资料
- 2024年青海省中考生物地理合卷试题(含答案解析)
- 福建省旋挖成孔灌注桩技术规程
- 2023-2024学年译林版八年级英语下册期末易错120题(江苏专用)(含答案解析)
- G -B- 17378.7-2007 海洋监测规范 第7部分 近海污染生态调查和生物监测(正式版)
- (高清版)JTST 325-2024 水下深层水泥搅拌桩法施工质量控制与检验标准
- 茂名高州市村(社区)后备干部招聘笔试真题2023
- 西南科技大学-2019级-下-工学类-电路分析A2-毕业生补考-试卷
- 沪教版数学五年级下册小数简便运算练习100题及答案
- 肺结核防治知识课件
评论
0/150
提交评论