提高例题教学有效性的几点策略_第1页
提高例题教学有效性的几点策略_第2页
提高例题教学有效性的几点策略_第3页
提高例题教学有效性的几点策略_第4页
提高例题教学有效性的几点策略_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 / 7提高例题教学有效性的几点策略上海外国语大学附属浙江宏达学校 巫锡富【摘 要】 数学例题是学生获得数学知识与技能、思想与方法、情感与态度及活动经验的主要载体。在“轻负高效”的时代教学要求的背景下,如何克服目前数学例题教学中存在的问题,充分发挥出例题的教学功能显得尤为重要。在笔者教学实践的基础上,从精心设计,螺旋变式;通规通法,正确示范;典例多解,拓展思维;反思提炼,促进迁移等四个方面,阐述了发挥例题教学功能的有效策略,从而提高数学课堂的效率。 【关键词】 提高 例题教学 有效性样例学习理论认为,数学教学中,数学例题教学消除了抽象的数学理论架构和学习者认知之间产生的障碍,易化了知识与技能的获得过程和途径,大大减轻了学习者的认知负荷和缩短了学习者的学习时限,有利于提高数学教学效率。正因如此,数学例题无时不处在课堂教学的节骨眼上,现行教材中的每一个数学知识点后总是带有例题,以帮助学生理解、掌握、运用所学习的数学知识。学习者通过例题学习,获取例题所蕴涵的知识、方法或原理,把例题所含有的直接或者间接信息逐步内化为自己的思维活动经验与结果,在随后解决问题的活动中,通过类比例题,形成其有效地解决问题策略和方法。新课程标准指出:作2 / 7为课堂教学的对象,学生是衡量教学有效性的载体,对例题教学的有效性的考察不能光看教学目标是否有效达成,更要关注学生的独立分析问题、解决问题的能力是否提高,学习结果是否增进,学习体验是否得到强化,活动经验是否得到积累。在近几年的教学中,我注意到影响数学例题教学效果的原因有许多:教师例题设计不典型、没有层次、或者是垄断课堂、不能有针对性地讲解,学生不去审题、不会分析、不会听讲、不知反思等等。下面结合教学实践中的一些案例,就如何提高例题教学的有效性谈谈自己的几点策略。一、精心设计,螺旋变式数学课程标准指出:教师的教学是“用教材教”的过程,而不是教“教”教材的过程。这就是说,一方面,教师的教材的理解者、参与者、实践者;另一方面,教师要跳出教材,超越教材。大师叶圣陶说得好:“教材无非是个例子。 ”既然是例子,说明教材不是教学的全部,教师要创造性地利用教材,自然要创造性地利用教材中的数学例题,教材中的例题进行适当的取舍和调整,进行改编、变式、拓展、深化等,并吸收生活中的鲜活题材,设计符合学生最近发展区的数学例题。螺旋变式帮助学生建构有价值的变式探索研究,展示数学知识发生、发展和应用的过程,有意识、有目的地引导学生从“变”的现象中发现“不变”的本质,从“不变”的本质中探究变得规律。如浙教版八年级下册一例题:已3 / 7知,如右图,在四边形 ABCD 中,E,F,G,H 分别是AB,BC, CD, DA 的中点. 求证:四边形 EFGH 是平行四边形. 变式 1、求证:顺次连结矩形各边的中点所得的四边形是菱形。变式 2、求证:顺次连结菱形各边的中点所得的四边形是矩形。变式 3、求证:顺次连结正方形各边的中点所得的四边形是正方形。变式 4、顺次连结什么四边形的中点得到平行四边形?变式 5、顺次连结什么四边形的中点得到距形?变式 6、顺次连结什么四边形的中点得到菱形?本例以三角形中位线知识为依托,作为“不变”桥梁,层层深入设计问题,螺旋变式,使学生充分掌握四边形这一章节所有基础知识和基本概念,强化沟通常见特殊四边形的性质定理、判定定理等,极大拓展学生的解题思路,活跃思维,激发兴趣。著名的数学教育家波利亚曾形象地指出:“好问题如同蘑菇类似,他们都成堆地生长,找到一个后,你应该在周围找一找,很可能附近就有好几个。 ”螺旋变式的形式较多,如条件变式、结论变式、题型变式、图形变式、逆向变式、延伸变式等,教材中能进行变式的例题也较多,只要教师能“找一找” ,就能发现“蘑菇”群。 二、通规通法,正确示范数学通规通法是研究数学乃至解决数学问题的重要途径,在例题教学中重视通规通法,4 / 7有利于强化学生的数学基础,发展数学能力,培养数学思维。在初中数学中常用的数学解题通法有换元法、配方法、待定系数法、消元法、特殊值法等。透过这些方法体会数学思想,包括转化思想、方程思想、数形结合思想、分类讨论思想等。例如,解分式方程的基本思想是转化为整式方程,通用的方法是去分母和换元法;解方程组的基本思想是消元,将多元方程转化为一元方程,基本方法是代入消元法和加减消元法;四边形及圆的问题经常转化为三角形问题来解决等。下面通过一个例子谈谈通规通法在解题中的优势所在。用待定系数法解确定二次函数解析式是一种重要的解题方法。二次函数解析式的基本形式有下面三种:1一般式: ;2顶点式: , 为二次函数图像的顶点坐标;3两根式: , 是二次函数图像与 轴两个交点的横坐标。二次函数的基本形式决定以下几点:已知抛物线上任意三点求二次函数的解析式,用一般式比较简便;已知抛物线的顶点坐标 求二次函数的解析式,用一般式比较简便;已知抛物线与 轴两个交点的横坐标求二次函数的解析式,用双根式比较简便。在求二次函数解析式中,教师就可以引导学生根据题意选择最简便的方法求解析式,学生解题的正确性和解题速度会有很大的提升,解题能力也就相应提高。例如,已知二次函数,当 时,函数有最大值为 5,且二次函数图像经过 ,求二次函数解析式。此例5 / 7可以根据顶点式的函数解析式,假设 。通规通法在解实际应用性问题中也颇具优势。通常,用方程解应用性问题一般涉及三个基本量,其中一个是已知的,在解题时我们一般假设第二个量,然后根据第三个量的的相等关系得出方程。 如浙教版七下第七章分式一例题:某地电话公司调低了长途电话的话费标准,每分费用降低了 25,因此按原收费标准 6 元话费的通话时间,在新收费标准下可多通话 5 分钟时间。问前后两种收费标准每分收费各是多少?分析:本题涉及通话总价,通话单价,通话时间三个基本量,通话总价是已知量,其余两个量是未知量,可以假设原通话单价为 元/分钟,从通话时间的相等关系,易得方程: 。当然也可接假原通话时间为 分钟,从通话单价的相等关系,可得方程: 。这种通规通法的分析,思路清晰,数量关系简单明了,学生解题容易上手,教学效果较佳。控制论意义上的教学理论认为,学生学习技能的主要途径是观察、模仿、操练、记忆与熟练化,其中,模仿过程尤为重要,它是把观察到的活动转化为观察主体相应的运动机能的过程,库贝认为存在 4 种以模仿来获得技能的重要策略,它们就是:反复示范、结构化、改进反馈过程和反复训练。而数学例题教学的一个基本功用是范例的作用,起规范、引导的作用,它展示的是专家的解题思路和解题技法,是经过了数学教学法适当加工的解法思路和过程,6 / 7为大多数学生提供了数学效仿和模仿对象。所以教师在例题教学中要注重通规通法的教学与分析,要注重板书得规范与完美,特别在新授课中,教师的教学行为直接会对学生的首映效应产生直接的影响。黄毅英先生所说的先“入法”到“出法”的学习模式,就是先要让学生从教师的例题教学中先“入法” ,即能模仿例题解决类似问题,经过螺旋变式,触类旁通,举一反三,不断积累解题经验并内化为自身的解题能力,实现“出法” 。 三、 典例多解,拓展思维学习数学,离不开思维。数和形的种种内在联系和相互关系,特别是它们的本质属性和科学规律,仅仅依靠感觉、知觉或表象是难以认识的,只有通过思维才能深刻理解,牢固掌握。在思维过程中,不同机智常交织在一起。数学中某些题的一题多解就可能同时训练多种机智。在教学中能求新、求变,实行开放式教学,逐步引导学生探求新的方法和知识,则能激发学生的学习积极性,达到最佳的教学效果。让学生探索多种解法,培养发散性思维。美国心理学家布鲁纳有句名言:“探索是教学的生命线” 。学生经过探索易于找到多种解法,这样既学习了新知识,又激活了学生的思维,为继续探索打下基础。如浙教版八下第六章特殊的平行四边形与梯形一例题:如右图,四边形 ABCD 是等腰梯形,AD BC ,已知B=60 度,AD=15,AB=45,求 BC 的长。 全日制义务教育数学7 / 7课程标准(实验稿) ,北京师范大学出版 ,XX,122钱云详、张锋.初中数学课堂教学设计透视与导引,世界图书出版社,2016,63马俊青.数学样例学习与学生数学知识形成的关系研究,数学教育学报,2016,84孙旭花、陈嘉

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论