汇编语言基础知识_第1页
汇编语言基础知识_第2页
汇编语言基础知识_第3页
汇编语言基础知识_第4页
汇编语言基础知识_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第 2 章章 汇编语言基础知识汇编语言基础知识 1 教学目的 掌握汇编语言概念极其使用的进位计数制 不同进位计数制之间的转 换 计算机编码以及基本数据类型 2 教学要求 了解汇编语言的基本概念 理解汇编语言使用的进位计数制 熟练掌握不同进制之间转换 计算机的编码 熟悉汇编语言中的基本数据类型 3 教学重点 不同进制之间转换 计算机的编码 4 掌握难点 不同进制之间转换 计算机的编码 5 教学进程安排 P1 P18 6 教学方法 一般叙述基本概念 着重课堂讲授不同进制之间转换 计算机的编码 7 教学内容摘要 2 12 1 汇编语言概述汇编语言概述 2 1 12 1 1 汇编语言基本概念汇编语言基本概念 1 机器语言 2 汇编语言 3 高级语言 2 1 22 1 2 汇编语言的特点汇编语言的特点 1 执行速度快 2 程序短小 3 可以直接控制硬件 4 可以方便地编译 5 辅助计算机工作者掌握计算机体系结构 2 22 2 进位计数制及其转换进位计数制及其转换 计算机内部的信息分为两大类 1 控制信息 控制信息是一系列的控制命令 用于指挥计算机如何操作 2 数据信息 数据信息是计算机操作的对象 它可分为数值数据和非数值数据 1 数值数据用于表示数量的大小 它有确定的数值 2 非数值数据没有确定的数值 它主要包括字符 汉字 逻辑数据等等 信息在输入计算机内部时 都必须用基 2 码编码表示 其原因如下 1 基 2 码在物理上最容易实现 2 基 2 码用来表示二进制数 其编码 加减运算规则简单 3 基 2 码的两个符号 1 和 0 正好与逻辑数据 真 与 假 相对应 为计算机实现逻 辑运算带来了方便 2 2 12 2 1 数与数制数与数制 十进制数的特点是 逢十进一 借一当十 需要用到的数字符号为十个 分别是 0 9 二进制数的特点是 逢二进一 借一当二 需要用到的数字符号为二个 分别是 0 1 八进制数的特点是 逢八进一 借一当八 需要用到的数字符号为八个 分别是 0 7 十六进制数的特点是 逢十六进一 借一当十六 需要用到的数字符号为十六个 分别 是 0 9 A F 234 13 10 2 102 3 101 4 100 1 10 1 3 10 2 101 11 2 1 22 0 21 1 20 1 2 1 1 2 2 124 36 8 1 82 2 81 4 80 3 8 1 6 8 2 AC B5 16 A 161 C 160 B 16 1 5 16 2 根据上述概念 可推广出表示任意进制数的通式 其中 为整数部分 为小数部分 R 为基数 每一项的数字可用 0 R 1 数 字中的一个数字来表示 2 2 22 2 2 不同数制之间的转换不同数制之间的转换 1 十进制数与二进制数之间的转换 1 十进制整数转换成二进制整数 方法 除 2 取余法 注意 第一次得到的余数为二进制数的最低位 最后得到的余数为二进制数的最高位 例例 2 12 1 将十进制数 97 转换成二进制数 其过程如下 即 A0 1 即 A1 0 即 A2 0 即 A3 0 即 A4 0 即 A5 1 即 A6 1 结束 最后结果为 97 10 A6 A5 A4 A3 A2 A1 A0 2 1100001 2 2 十进制小数转换成二进制小数 方法 乘 2 取整法 注意 最后将每次得到的整数部分 必定是 0 或 1 按先后顺序从左到右排列即得到所对 应二进制小数 例例 2 22 2 将十进制小数 0 6875 转换成二进制小数 如下 0 6875 2 1 3750整数部分为 1 即 A 1 1 297 248 224 212 26 23 21 商为0 余数为 1 余数为 0 余数为 0 余数为 0 余数为 0 余数为 1 余数为 1 余数为 0 10 m i i i n i i i n mi i i rxrx rxN n i i ir x 0 m i i ir x 1 0 3750余下的小数部分 2 0 7500整数部分为 0 即 A 2 0 0 7500余下的小数部分 2 1 5000整数部分为 1 即 A 3 1 0 5000余下的小数部分 2 1 0000整数部分为 1 即 A 4 1 0 0000余下的小数部分为 0 结束 最后结果为 0 6875 10 0 A 1A 2A 3A 4 2 0 1011 2 3 一般的十进制数转换成二进制数 为了将一个既有整数又有小数部分的十进制数转换成二进制数 可以将其整数部分和小数 部分分别进行转换 然后再组合起来 例如 4 二进制数转换十进制数 方法 按位权展开后相加 例如 111 11 2 1 22 1 21 1 20 1 2 1 1 2 2 4 2 1 0 5 0 25 7 75 10 2 十十进进制与八制与八进进制之制之间间的的转换转换 1 十进制整数转换成八进制整数 方法 除 8 取余法 2 十进制小数转换成八进制小数 方法 乘 8 取整法 3 十十进进制与十六制与十六进进制之制之间间的的转换转换 1 十进制整数转换成十六进制整数 方法 除 16 取余法 2 十进制小数转换成十六进制小数 方法 乘 16 取整法 3 十六进制数转换十进制数 方法 按位权展开后相加 4 二二进进制与八制与八进进制 十六制 十六进进制数之制数之间间的的转换转换 因为 23 8 所以每三位二进制数对应一位八进制数 24 16 所以每四位二进制数对应一位十六进制 表 2 1 列出了十进制 二进制 八进制 十六进制最基本的数字的对应关系 这些对应关 系在后面的二进制 八进制 十六进制相互转换中要经常用到 表表 2 12 1 十 二 八 十六进制数码的对应关系十 二 八 十六进制数码的对应关系 十进制十进制二进制二进制八进制八进制十六进制十六进制 0000000 1000111 2001022 3001133 4010044 5010155 6011066 7011177 81000108 91001119 10101012A 11101113B 12110014C 13110115D 14111016E 15111117F 在计算机里 通常用数字后面跟一个英文字母来表示该数的数制 1 十进制数一般用 D DECIMAL 2 二进制数用 B BINARY 3 八进制数用 O OCTAL 4 十六进制数用 H HEXADECIMAL 来表示 2 2 3 3 计算机中数与字计算机中数与字符的表示方法符的表示方法 2 3 12 3 1 数值数据的编码及其运算数值数据的编码及其运算 1 二进制数的编码及运算 两个概念 机器数 带符号的二进制数值数据在计算机内部的编码 真值 机器数所代表的实际值 1 二进制数补码编码 要注意以下两个问题 在补码表示法中 0 只有一种表示 即 000 000 对于 10000000 这个补码编码 其真值被定义为 128 举例 机器字长 n 8 位 X 48D 求 X 补 举例 机器字长 n 8 位 X 48D 求 X 补 举例 机器字长 n 16 位 X 48D 求 X 补 举例 机器字长 n 16 位 X 48D 求 X 补 注意 汇编语言中 为了区别指令码和名称 规定 A F 开始的数据前面加零 补码数要扩展时 正数是在符号的前面补 0 负数是在符号的前面补 1 已知补码求真值的方法是 当机器数的最高位 符号位 为 0 时 表示真值是正数 其值 等于其余 n 1 位的值 当机器数的最高位 符号位 为 1 时 表示真值是负数 其值等于其余 n 1 位按位取反末位加 1 的值 我们来讨论一下补码表示数的范围 表表 2 22 2 8 8 位二进制补码数范围位二进制补码数范围 补码编码 机器数 补码编码 机器数 十进制数 真值 十进制数 真值 0 1111111 127 0 1111110 126 0 0000010 2 0 0000001 1 0 00000000 1 1111111 1 1 1111110 2 1 0000010 126 1 0000001 127 1 0000000 128 当 n 16 时 N 的数据取值范围是 32768 N 32767 2 二进制数补码的运算 补码的运算规则 X Y 补 X 补 Y 补 X Y 补 X 补 Y 补 计算机引入了补码编码后 带来了以下几个优点 减法转化成了加法 这样大大简化了运算器硬件电路的设计 加减法可用同一硬件电 路进行处理 运算时 符号位与数值位同等对待 都按二进制参加运算 符号位产生的进位丢掉不 管 其结果是正确的 这大大简化了运算规则 运用以上两个公式时 要注意两点 第一点 公式成立有个前提条件 就是运算结果不能超出机器数所能表示的范围 否则运 算结果不正确 按 溢出 处理 第二点 采用补码运算后 结果也是补码 欲得运算结果的真值 还需转换 2 2 无符号整数的编码及运算规则 在某些情况下 计算机要处理的数据全是正数 此时机器数再保留符号位就没有意义了 这时 我们将机器数最高有效位也作为数值位处理 也就是说 假设机器字长为 n 位 则有符号整数的编码可表示为 1 位 n 1 位 无符号整数的编码可表示为 n 位 无符号整数的表数范围为 0 N 2n 1 3 十进制数的编码及运算 1 BCD 码 表表 2 32 3 BCDBCD 码表码表 十进制数码十进制数码0 01 12 23 34 45 56 67 78 89 9 8421 码0000000100100011010001010110011110001001 2 BCD 码的运算规则 3 BCD 码的修正规则 2 3 2 3 2 2 非数值数据的二进制编码非数值数据的二进制编码 1 字符编码 使用最多 最普遍的是 ASCII 字符编码 即美国信息交换标准代码 AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE 2 汉字的编码 汉字输入编码 汉字机内码 汉字字形码 3 逻辑数据的编码 与 运算 AND 或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论