第七章-图像分析.ppt_第1页
第七章-图像分析.ppt_第2页
第七章-图像分析.ppt_第3页
第七章-图像分析.ppt_第4页
第七章-图像分析.ppt_第5页
免费预览已结束,剩余81页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第八章图像分析 概述表达描述 目标表达目标描述 概述 图像分析的一个主要工作 要从图像中获得目标特征的量值这些量值的获取常借助于对图像分割后得到的分割结果 对目标特征的测量利用分割结果进一步从图像中获取有用信息两个关键问题 1 选用什么特征来描述目标2 如何精确的测量这些特征 图像分割之后 为了进一步对图像作分析和识别 就必须通过对图像中的物体 目标 作定性或定量的分析来作出正确的结论 这些结论是建立在图像物体的某些特征的基础上的图像描述 就是用一组数量或符号 描述子 来表征图像中被描述物体的某些特征 图像中的区域 目标 可用其内部 如组成区域的象素集合 表示 也可用其外部 如组成区域边界的象素集合 表示 关心区域的反射性质如灰度 颜色 纹理等 关心区域的形状等 选定了表达方法 还需要对目标进行描述 使计算机能充分利用所能获得的分割结果 表达是直接具体的表示目标 好的表达方法应具有节省存储空间 易于特征计算等优点描述是较抽象的表示目标 好的描述应在尽可能区别不同目标的基础上对目标的尺度 平移 旋转等不敏感 图像目标的特征提取 幅度特征 作为图像特征 一般应具备以下几个特点 1 可区分性 2 可靠性 3 独立性 4 数量要少 图像象素灰度值 三色值 频谱值等表示的幅值特征是最基本的图像特征 也可以取确定邻域 如含有 2W 1 2W 1 个象素 中的平均灰度幅度 统计特征直方图统计特征图像振幅的一维概率密度可定义为表示灰度整量电平 相应的一阶直方图为其中 M表示以 i j 为中心的测量窗内象素的总数 N b 表示该窗内灰度值为b的象素数 对于一幅平稳图像而言 测量窗可取为整幅图像 二维直方图是基于象素的二维联合分布密度定义得到的设 i j k l 两任意象素点上的灰度值分别为f i j f k l 则图像灰度值的联合分布密度可表示为相应的二维直方图可表示为其中M为测量窗口中象素总数 N a b 表示两事件f i j a f k l b同时发生的概率 统计示性数特征 当图像中象素间有较强的相关性时 P a b 矩阵将沿对角线密集排列 可以用二维分布示性数来描述二维图像数组的统计特性 目标表达 目标表达 边界表达区域表达 链码多边形边界段标记 骨架 链码ChainCode 链码是对边界点的一种表示方法特点 利用一系列具有特定长度和方向的相连的直线段来表示目标的边界 每个线段的长度固定 而方向数目取为有限 只要边界的起点用 绝对 坐标表示 其余点只用方向来代表偏移量 表示1个方向数比表示1个坐标值所需的比特数少 而且对每1个点又只需1个方向数就可以代替2个坐标值 因此链码表达大大减少边界表示所需的数据量 0 1 2 3 0 4 1 2 3 5 6 7 4 directionalchaincode 8 directionalchaincode 0 X Y 0 1 2 3 0 X Y 0 1 2 3 4 5 6 7 实际中直接对分割所得的目标边界编码有可能出现2个问题 1 如此产生的码串很长2 噪声等干扰会导致小的边界变化 而使链码发生与目标整体形状无关的较大变动 对原边界以较大的网格重新采样 并把与原边界点最接近的大网格点定为新的边界点 常用的改进方法 这样获得的新边界具有较少的边界点 而且其形状受噪声等干扰的影响也较小 消除了目标尺度变化对链码的影响 使用链码时 起点的选择是很关键的 对同一边界 如用不同的边界点作为链码起点 得到的链码是不同的 具体做法 归一化处理 给定一个从任意点开始而产生的链码 可把它看作1个由各个方向数构成的自然数 将这些方向数依1个方向循环以使它们所构成的自然数的值最小 将这样转换后所对应的链码起点作为这个边界的归一化链码的起点 如图所示 0 3 3 2 2 1 0 1 10103322 原链码 归一化链码 01033221 起点归一化 3 3 2 2 1 0 1 4邻域 用链码表示给定目标的边界时 如果目标平移 链码不会发生变化 而如果目标旋转 则链码将会发生变化 用链码的1阶差分来重新构造1个序列 1个表示原链码各段之间方向变化的新序列 相当于把链码进行旋转归一化 3 3 2 2 1 0 1 2 10103322 33133030 0 0 3 3 2 1 2 1 左转90度 3 21210033 33133030 为最右1个方向数循环到左边 目标旋转后 原链码发生变化 但差分码没有变化 相邻2个方向按反方向相减 Chaincode 00003303332123233Chaincode 000767664246560644403222121211210110013324321001 4邻域 8邻域 边界段boundarysegments 链码对边界的表达是逐点进行的 而一种表达数据量更节省的方法是把边界分解成若干段分别表示 可以减少边界的复杂度 并简化描述过程将边界分解为多个边界段 一般借助凸包的概念来进行 如图 a 是1个任意的集合S 它的逼近凸包H是包含S的最小凸形 如图 b 黑线框内部所示 常把H S叫S的凸残差 convexdeficiency 并用D 即图 b 中黑线框内各白色部分表示 当把S的边界分解为边界段时 能分开D的各部分的点就是合适的边界分段点 也就是说 这些分段点可借助D来唯一确定 跟踪H的边界 每个进入D或从D出去的点就是1个分段点 如图 c 所示 具体做法 这种方法不受区域尺度和取向的影响 多边形近似PolygonalApproximations 在实际中 由于噪声 采样等影响 在边界处有很多较小的不规则处 这些不规则处常对链码和边界段表达产生较明显得干扰一种抗干扰性能更好 且更节省表达所需数据量的方法 用多边形去近似逼近边界 多边形是一系列线段的封闭集合 在数字图像中 如果多边形的线段数与边界上的点数相等 则多边形可以完全准确的表达边界 多边形表达的目的 要用尽可能少的线段 来代表边界 并保持边界的基本形状 这样就可以用较少的数据和较简洁的形式来表达和描述边界 常用的多边形表达方法 1 基于收缩的最小周长多边形法2 基于聚合 merge 的最小均方差线段逼近法3 基于分裂 split 的最小均方差线段逼近法 对于第1种方法 将原边界看成是有弹性的线 将组成边界的象素序列的内外边各看成一堵墙 如图 a 所示 如果将线拉紧 则可得到如图 b 所示的最小周长多边形 a b 对于第2种方法 沿边界依次连接象素 先选1个边界点为起点 用直线依次连接该点与相邻的边界点 分别计算各直线与边界的 逼近 拟合误差 把误差超过某个限度前的限度确定为多边形的1条边 并将误差置0 然后以线段另一端点为起点 继续连接边界点 直到绕边界1周 这样就得到1个边界的近似多边形 如图给出基于聚合方法的多边形逼近 原边界由点a b v d e f g h等表示的多边形 现在先从点a出发 依次做直线ab ac ad ae等 对从ac开始的每条线段计算前一边界点与线段的距离作为拟合误差 图中设bi和cj没有超过预定的误差限度 而dk超过该限度 所以选d为紧接点a的多边形顶点 再从点d出发继续如上进行 最终得到的近似多边形的顶点为adgh 对于第3种方法 先连接边界上相距最远的2个象素 即把边界分成2部分 然后根据一定准则进一步分解边界 构成多边形逼近边界 直到拟合误差满足一定限度 如图给出以边界点与现有多边形的最大距离为准则分裂边界的原理 a a a b b b c c c d d d a 原始边界 b 按最大距离分割边界 c 连接垂直点 d 最后的多边形 标记Signature 标记是边界的1 D泛函表达产生标记方法很多 最简单的是 先对给定的物体求重心 然后把边界点与重心的距离作为角度的函数 得到一种标记 如图 a 和 b 所示 给出两个通过该方法得到标记的例子 a b 在 a 中 r q 是常数 在 b 中r q Asecq 不管用何种方法产生标记 其基本思想都是把2 D的边界用1 D的较易描述的函数形式来表达 把2 D形状描述 1 D波形分析 上面所述方法产生的标记不受目标平移的影响 但与目标的尺度变换以及旋转都有关 尺度变换造成的影响 标记的幅度值发生变化 这个问题可用那个把最大幅度值归一化到单位值来解决 尺度变换的解决 解决选择影响的方法 也可参照链码归一化的方法 常用的方法 选离重心最远的点作为标记起点 求边界主轴 以主轴上离重心最远的点作为标记起点 考虑边界上所有的点 计算量大 但较可靠 中轴变换 中轴变换是将区域骨架化 同时还附带区域形状和大小的区域边界信息 因此 中轴变换除了可以用中轴 骨架 来表示区域外 还可以由中轴变换的表示重建原始区域 我们称对象中 那些以它们为圆心的某个圆和边界至少有两个点相切的点的连线 为该对象的中轴 可以用从草场的四周同时点火来比喻对象中轴的形成过程 当火焰以相同的速度同时向中心燃烧时 火焰前端相遇的位置 恰好就是该草场的中轴 当围绕边界线逐层去除外围点时 若一点被一次剥皮中遇到两次 则该点是中轴上的点 因此这一点被除去 对象将被分割成两部分 设某个区域S的边界为B 对于该区域内的任意一点x 有 其中d x y 是点x到点y的欧氏距离 若存在两个以上的点y B 得到相等的q x B 则x点位于区域S的中轴上 这就是说 边界B上有两个以上点 它们距离中轴上x点都为相等的最小距离 因此区域S的中轴可以看成是一系列大小不同的与边界B相切的接触圆圆心的集合 另外一种生成 中轴 的方法是以某种方式对对象中的全部内点进行试验 逐个以它们为圆心 做半径逐渐增大的圆 当圆增大到和目标边界至少有两个不相邻的点同时相切时 则该点是中轴上的点 如图8 3 11给出了这种中轴生成方法 其中x1点 x3点是中轴点 因为以它们为圆心的圆是最大的或具有两个或两个以上的切点 而x2点不属于中轴点 因为有包含它的在S中的更大的圆存在或以x2为圆心的圆与S的边界只有一个切点 也可以用点到边界的距离来定义骨架和中轴 骨架S 是目标S中到边界B有局部最大距离的点集合 即 若 u v 是 i j 点的全部邻点 当且仅当时 称S中的点 i j 为骨架S 上的点 其中d i j B 和d u v B 分别表示 i j 和 u v 点到边界B的距离 显然 若 i j 在边界B上 则d i j B 0 在其他情况下 d i j B 0 为了由骨架还原原始图像 引入一个新的定义 把离开 i j 点的距离 t的点的集合 称为 盘 并记作为Dt i j 据此定义 按4 方向距离 Dt i j 为一菱形 按8 方向距离 Dt i j 为一正方形 于是可以得到下列结论 如果对于S中的点 i j 的全部集合有d i j B t 则Dt i j 必在S中如果 u v 是 i j 的邻域 则对任何的t Dt i j 都一定包含在Dt 1 u v 中 中轴变换计算量较大 而且对边界噪声或区域内的小孔敏感 如图8 3 12所示 其中图 a 和 b 对较细长的物体其骨架常能提供较多的形状信息 而对较粗短的物体 则骨架提供的信息较少 对于图 d 是图 c 中的区域受到噪声的影响 它们之间存在很小的差别 但它们的骨架相差很大 细化 为了便于描述和抽取特征 对那些细长的区域常用它的 细化骨架 表示 这些细化线处于图形的中轴附近 而且从视觉上来说仍然保持原来的形状 这种处理就是细化细化算法多用于二值图像 它不能简单的消除所有的边界点 否则将破坏图形的连通性 因此在每次迭代种 必须消去S的边界点而不破坏它的连通性 而且不能消去那些只有一个邻点的边界点 以防止弧的端点被消去 对可以消去的边界点增加3个限制条件 1 不消去线段端点 2 不中断原来连通的点 3 不过多侵蚀区域 定义 简单边界点 设p为S中的一个边界点 如果它的8 邻域中属于S的点只有一个与p相邻接的连通分量 则p点为S的简单边界点 细化算法可以归纳为 消去S中那些不是端点的简单边界点 并按S的上 下 左 右的顺序反复进行 直到不存在可以消去的简单边界点 介绍一种由纳克卡赫欣格尔提出的细化算法 这种算法不仅速度快 而且容易实现首先假定 1 分析的是二值图像 2 1表示区域点 称为暗点 0表示背景点称为亮点 3 边界是一个暗点 且该暗点至少有一个亮的4 邻接点 4 端点是一个暗点 该暗点有且只有一个暗的8 邻接点 5 转折点是一个暗点 如果删除该暗点 则破坏连通性 6 在进行细化算法之前 对所有域的边界进行了平滑处理 这是因为沿边界的噪声或其他意外的干扰会影响细化的结果 细化算法采用的邻点配置如图所示 认定p为边界点 应符合下述四种类型之一或几种情况 即 1 左邻接点n4为亮点的左边界点 2 右邻接点n0为亮点的右边界点 3 上邻接点n2为亮点的上边界点 4 下邻接点n6为亮点的下边界点 同时 p有可能是多种类型的边界点 如p是暗点 尔n0和n4均为亮点 则p既是右边界点 也是左边界点 下面首先讨论那些左边界点应当删除 也即讨论如何识别 标记 判断应删除的左边界点 同理类推 可标记除应删除的右边界点 上边界点和下边界点 若p点不是端点 也不是转折点 或删除它不会引起过分侵蚀 在此情况下 对p进行标记 判断上述条件是否满足采用的方法是比法 即与如图8 3 14所示的各个窗口进行比较 图中p和星号为暗点 d和e是 无所谓点 即既可是暗点 也可是亮点 若p的邻接点配置与窗口图中 1 c 相匹配 则有两种可能情况 1 所有d均为亮点 则p为端点 2 至少有一个d为暗点 则p为转折点 在这两种情况下 p不应标记 也即p点不能删除 若至少有一个d和e是暗点 则p是转折点 不标记 假如所有的d均为亮点 而e是 无所谓点 则得到如图的八种情况 分析上图可知 配置如图 a c p是端点 配置如图 d 所示 p是转折点 若删除配置 e f 中的p点 会引起在倾斜宽度为2的域中产生不应有的侵蚀 配置图 g 中 p称为突角 是形状的重要描述 不应删除 配置图 h 所示表明域被简化成一个点 若删除该点 则表明将域侵蚀掉 若将 d 中的d e值与上述值互换 或d e值可是亮点和暗点 仍能得出上述结论 因此 若左边界点p的8邻接点与图中任一窗口相匹配 则对p不作标记 即p不能删除 检验p的8个邻接点时 可用一个简单的逻辑表达式表示 即同理可推出右边界点 上边界点和下边界点的逻辑表达式为 目标描述 目标描述 边界描述区域描述 简单描述形状数傅立叶描述 简单描述拓扑描述纹理描述不变矩 边界描述 简单描述 1 边界的长度 边界的全局特征 指边界所包围区域的轮廓的周长 区域R的边界B是由R的所有边界点按4 方向或8 方向连接组成的 区域的其它点称为区域的内部点 对于区域R而言 它的每1个边界点P都应满足2个条件 1 P本身属于区域R 2 P的邻域中有象素不属于区域R 注意 如果区域R的内部点用8 方向连通来判断 则得到的边界为4 方向连通的 如果用4 方向连通来判断 则得到的边界为8 方向连通的 区域的边界点和内部点要采用不同的连通性来定义 否则会出现歧义 如图说明这个问题 a b a 中浅阴影象素点组成1个目标区 如果将内部点用8 方向连通判断 则 b 深色区域点为内部点 其余浅色区域点构成4 方向连通边界 如果将内部点用4 方向连通判断 则此时区域内部点和8 方向连通边界如图 c 所示 c 但如果边界点和内部点用同1类连通判断 则图中标有 的点归属就会出现问题 例如都采用4 方向连通判断 则 的点既应判为内部点 邻域中所有象素均属于区域 但又应判为边界点 否则 b 中边界将不连通 如果边界用单位长链码表示 则水平和垂直码的个数加上 2乘以对角码的个数 边界长度 将边界的所有点从0排到K 1 设边界点共K个 则边界长度计算式为 B 数量 k 1按模为K计算 k xk 1 yk 1 N4 xk yk 2 k xk 1 yk 1 ND xk yk 对应2个象素间直线段 对应2个象素间对角线段 2 曲率 描述边界上各点沿边界方向变化的情况 在1个边界点的曲率的符号描述了边界在该点的凹凸性 如果曲率大于0 则曲线凹向朝着该点的法线的正向 如果曲率小于0 则曲线凹向朝着该点法线的负方向 如沿顺时针方向跟踪边界 当在1个点的曲率大于0 则该点属于凸段的一部分 否则为凹段一部分 形状数ShapeNumbers 形状数是基于链码的1种边界形状描述符根据链码的起点位置不同 1个用链码表达的边界可以有多个1阶差分 而1个边界的形状数是这些差分中其值最小的1个序列 也就是说 形状数是值最小的 链码 差分码 每个形状数都有1个对应的阶 order 阶定义为 形状数序列的长度 即码的个数 对闭合曲线 阶总是偶数 对应凸形区域 阶也对应边界外包矩形的周长 Order4Order6 Chaincode 0321003221Difference 3333303303Shapeno 3333033033 Order8Order8Order8 Chaincode 003322110303221100032221Difference 303030303313303030033003Shapeno 030303030303313300330033 4 计算链码 差分码以及形状数 Chaincode 000030032232221211Difference 300031033013003130Shapeno 000310330130031303 1 从所有满足给定阶要求的矩形中选取其长短轴比例最接近给定边界如图a的矩形 如图b所示 2 根据给定阶将选出的矩形划分为如图c所示的多个等边正方形 18阶 3 求出与边界最吻合的多边形 如将面积的50 以上包在边界内的正方形划入内部得到d图 a b c d 计算形状数步骤 形状数提供了1种有用的形状度量方法 对每个阶是唯一的 不随边界的旋转和尺度的变化而改变 另外它也提供了1种使形状可以比较的量度 对2个区域边界而言 它们之间形状上的相似性可借助它们的形状数进行描述 从小到大逐步计算两个边界的各阶形状数 并相互比较 直到找到最大阶的相等形状数 即2个区域边界之间的相似度用它们的最大公共形状数来衡量 傅立叶描述 对边界的离散傅立叶变换表达可以作为定量描述边界形状的基础其优点 将2 D问题简化为1 D问题 假定某个目标区域边界由N个象素点组成 可以把这个区域看作是在复平面内 纵坐标为虚轴 横坐标为实轴 如图8 4 4所示 这个区域边界上的点可定义为一复数x yj 由边界上任意一点开始 按逆时针方向沿线逐点可写出一复数虚礼f i 其中0 i N 1 对此序列进行离散傅立叶变换 即得到该边界在频域的唯一表示式F k 此处0 k N 1 这些傅立叶系数称为边界的傅立叶描述符 选取不同傅立叶描述的前M个不同系数对边界的表达 曲线拟合 任何一个感兴趣的二维图像目标或对象的边界 都是平面中的一条曲线 如果能对该曲线拟合一个函数 则这一函数便可以用于描述该目标的边界形状设 xi yi i 0 1 2 M为目标边界上的一组点 如图所示 其中 a 是封闭曲线 b 是不封闭的曲线 把y看成是x的函数 并且找到某个拟合函数 使得由它所确定的一组数据点 xi g xi 和已知一组数据点 xi yi 之间有最小的误差 因此该拟合函数可用于描述边界 由于封闭曲线将使x和y具有非单值的关系 所以 为使问题简单 可以把它分解成两条或多条具有单值关系的曲线 只需研究这些由具有因果关系的点所组成的函数关系曲线如何进行逼近就可以了 凡相邻两点满足 的关系 称它们是因果的 由具有因果关系的点所组成的函数关系曲线 b 所示 常用的误差度量有 幅度误差 最小二乘方误差 峰值误差 常用的曲线拟合方法是分段多项式曲线拟合方法设拟合曲线具有如下多项形式 把M 1个观测数据代入上式可得M 1个联立方程组 即 如果用 M 1 1维矢量Y表示实测数据的M 1个y坐标分量 则利用使最小二乘方误差 区域描述 简单描述 1 区域面积 描述区域的大小 对属于区域的象素计数 设正方形象素的边长为单位长 则其面积A的计算式为 A x y R1 d n A ofpixels 10 A d d 2 4 5 A n n 2 8 后面两种方法直观 但误差较大 而第一种方法不仅简单 而且对原始模拟区域面积的无偏和一致的最好估计 2 区域重心 根据所有属于区域的点计算出来的 拓扑描述 拓扑学是研究图形不受畸变变形影响的性质 区域的拓扑性质是对区域的一种全局描述这些性质既不依赖距离 也不依赖基于距离测量的其它特性 对1个给定平面区域而言 区域内的孔数H和区域的连通成分C都是常用的拓扑性质 可进一步来定义欧拉数E E C H A B 2个孔 1个连通成分 欧拉数为 1 3个连通成分 0个孔 欧拉数为3 1个孔 1个连通成分 欧拉数为0 2个孔 1个连通成分 欧拉数为 1 Hole Edge Face Vertex 欧拉数是1个区域的拓扑描述符 全由直线段构成的区域集合可以利用欧拉数简单描述 这些区域也叫多边形网 对于1个多边形网 假如用W表示其顶点数 Q表示其边线数 F表示其面数 则欧拉数为 W Q F C H E W 7 Q 11 F 2 C 1 H 3 E 2 形状描述符 1 形状参数 formfactor 根据区域的周长和区域的面积计算的 周长 区域为圆形时F为1 其它形状时 F 1 即当区域为圆时 F为最小 对数字图像而言 边界按4 连通计算 则对正八边形区域F最小 边界按8 连通计算 则对正菱形F最小 形状参数在一定程度上描述了区域的紧凑性 无量纲 对尺度变化不敏感 如果去除由于离散区域旋转带来的误差 它对旋转也不敏感 注意 仅仅靠形状参数F有时并不能把不同形状的区域分开 如图所示 3个区域的周长和面积都相同 因而具有相同的形状参数 但它们的形状明显不同 p p p p p p p p p p p p p p p p F1 F2 F3 A 5 B 2 12 F1 F2 F3 2 偏心率度 区域的偏心度是区域形状的重要描述 度量偏心度常用的一种方法是采用区域主轴和辅轴的比 如图所示 即为A B 图中 主轴与辅轴相互垂直 且是两方向上的最长值 另外一种方法是计算惯性主轴比 它基于边界线点或整个区域来计算质量 Tenenbaum提出了计算任意点集R偏心度的近似公式 计算平均向量 计算ij矩 计算方向角 计算偏心度的近似值 纹理描述符 纹理是图像分析中常用的概念 但目前还对它无正式的定义一般认为 纹理是由许多相互接近 互相编织的元素构成 常有周期性直观而言 纹理描述可提供区域的平滑 稀疏 规则性等特性常用3种纹理描述方法 统计法 结构法 频谱法 平滑纹理 粗糙纹理 规则纹理 统计法StatisticalApproaches 纹理自相关函数描述纹理和纹理基元的空间尺寸有关 大尺寸的纹理基元将对应于较粗的纹理 反之 小尺寸的纹理基元将对应于较细的纹理由于纹理是由纹理基元在空间的重复排列组成的 因此 自相关函数将能表示纹理基元的尺寸特征 如果纹理基元较大 则自相关函数随相关距离增大而缓慢下降 如果纹理基元相对较小 则自相关函数随相关距离增大而迅速下降 设灰度图像I u v 在矩形区域0 u Lx 0 v Ly 之外为零 则其归一化自相关函数为 对于含有重复纹理模式的图像 自相关函数表现出一定的周期性 其周期等于相邻纹理基元的距离 当纹理粗糙时 自相关函数缓慢下降 而细纹理下降迅速 自相关函数被用来测量纹理的周期性以及纹理基元的大小 最简单的统计法借助于灰度直方图的矩来描述纹理图像或区域z的灰度直方图的n阶矩为 mn z Si 1L zi m np zi m为z的均值 m Si 1Lzip zi 2阶矩u2也叫方差s2 z 是灰度对比度的量度 可用于描述直方图的相对平滑程度3阶矩u3表示了直方图的偏斜度 skewness 4阶矩u4表示了直方图的相对平坦性 relativeflatness 仅借助灰度直方图的矩来描述纹理没能利用象素相对位置的空间信息 可建立区域灰度共生矩阵 设S为目标区域R中具有特定空间联系的象素对的集合 则共生矩阵P定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论