




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 七年级数学下期期末复习提纲七年级数学下期期末复习提纲 第六章第六章 一元一次方程一元一次方程 一 基本概念 一 方程的变形法则 法则 1 方程两边都 或 同一个数或同一个 方程的解不变 例如 在方程 7 3x 4 左右两边都减去 7 得到新方程 3x 3 4 7 在方程 6x 2x 6 左右两边都加上 4x 得到新方程 8x 6 移项 移项 将方程中的某些项改变符号改变符号后 从方程的一边移动到另一边 这样的变形叫做移项 注 意移项要变号移项要变号 例如 1 将方程 x 5 7 移项得 x 7 5 即 x 12 2 将方程 4x 3x 4 移项得 4x 3x 4 即 x 4 法则 2 方程两边都除以或 同一个 的数 方程的解不变 例如 1 将方程 5x 2 两边都除以 5 得 x 5 2 2 将方程 x 两边都乘以得 x 3 2 1 3 3 2 9 2 这里的变形通常称为 将未知数的系数化为将未知数的系数化为 1 1 注意 1 如遇未知数的系数为整数 系数化为 1 时 就要除以这个整数 如遇到未知数的系 数为分数 系数化为 1 时 就要乘以这个分数的倒数 2 不论上一乘以或除以数时 都要注意结果的符号 方程的解的概念 方程的解的概念 能够使方程左右两边都相等的未知数的值 叫做方程的解 解 求不方程的解的过程 叫做解方程 解方程 二 一元一次方程的概念及其解法 1 定义 只含有一个未知数一个未知数 并且含有未知数的式子都是 未知数的次数是未知数的次数是 这样 的方程叫做一元一次方程 例如 方程 7 3x 4 6x 2x 6 都是一元一次方程 而这些方程 5x2 3x 1 0 2x y l 3y 5 就不是一元一次方程 1 x 1 2 2 一元一次方程的一般式为 ax b 0 其中 a b 为常数 且 a 0 一元一次方程的一般式为 ax b 其中 a b 为常数 且 a 0 3 解一元一次方程的一般步骤 步骤 去分母 去括号 移项 合并同类项 未知数的系数化为去分母 去括号 移项 合并同类项 未知数的系数化为 1 1 注意 1 方程中有多重括号时 一般应按先去小括号 再去中括号 最后去大括号的方法去 括号 每去一层括号合并同类项一次 以简便运算 2 去分母 指去掉方程两边各项系数的分母 去分母时 要求各分母的最小公倍数 去掉 分母后 注意添括号 去分母时 不要忘记不等式两边的每一项都乘以最小公倍数 即公分母 三 一元一次方程的应用 1 纯数学上的应用 1 一元一次方程定义的应用 2 方程解的概念的应用 3 代数 中的应用 4 公式变形等 2 实际生活上的应用 1 调配问题 2 行程问题 3 工程问题 4 利息问题 5 面积问题等 3 探索性应用 这类问题与上面的几类问题有联系 但也有区别 有时是一种没有结论的问题 需要你给出结论并解答 第七章第七章 二元一次方程组二元一次方程组 一 基本概念 一 二元一次方程组的有关概念 1 二元一次方程的定义 都含有 个未知数 并且 的次数都是 1 像这样的整式 方程 叫做二元一次方程 一般形式为 ax by c a b c 为常数 且 a b 均不为 0 结合一元一次方程 二元一次方程对 元 和 次 作进一步的理解 元 与 未知数 相通 几个元是指几个未知数 次 指未知数的最高次数最高次数 例如 方程 7y 3x 4 3a 3 4 7b 2m 3n 0 1 s t 2s 等都是二元一次方程 而 6x2 2y 6 4x 8y 6z n 等都不是二元一次方程 m 2 2 二元一次方程组的定义 把两个二元一次方程合在一起 就组成了一个二元一次方程组 3 例如 等都是二元一次方程组 8 532 yx yx 12 337 ba ba 1 2 nm nm 113 2 ts ts 而 等都不是二元一次方程组 8 532 zx yx 12 337 aa aa 1 2 1 nm n m 注意 1 只要两个方程一共含有两个未知数 也是二元一次方程组 如 8 52 y x 也是二元一次方程组 11 2 t s 3 二元一次方程和二元一次方程组的解 1 二元一次方程的解 能够使二元一次方程的左右两边都相等的两个两个未知数的值 叫做二元 一次方程的解 2 二元一次方程组的解 使二元一次方程组的两个方程两个方程左右两边的值都相等的两个两个未知数的 值 叫做二元一次方程组的解 即是两个方程的公共解 注意 写二元一次方程或二元一次方程组的解时要用 联立 符号 把方程中两个未知数 的值连接起来写 二元方程解的写法的标准形式是 其中 a b 为常数 by ax 二 二元一次方程组的解法 1 解二元一次方程组的基本思想 消元 化二元一次方程组为一元一次方程来解 2 二元一次方程组的基本解法 1 代入消元法 代入法 定义 通过 代人 消去一个未知数 将方程组转化为一元一次方程来解的这种解法叫做 代人消元法 简称代入法 步骤 选取一个方程 将它写成用一个未知数表示另一个未知数 记作方程 把 代人另一个方程 得一元一次方程 解这个一元一次方程 得一个未知数的值 把这个未知数的值代人 求出另一个未知数值 从而得到方程组的解 2 加减消元法 加减法 4 定义 通过将两个方程相加 或相减 消去一个未知数 将方程组转化为一元一次方程来 解 这种解法叫加减消元法 简称加减法 步骤 把两个方程同一个未知数的系数乘以适当的倍数 使得这两个未知数的绝对值相 同 把未知数的绝对值相同的两个方程相加或相减 得一元一次方程 解这个一元一次方程 得一个未知数的值 把这个未知数的值代人原方程组中系数叫简单的一个方程 求出另一个未知数值 从而得到方程组的解 注意 正确选用两种基本解二元一次方程组 1 若二元一次方程组中有一个未知数系数的绝对值为 1 适宜用 代入法 2 用加减法解二元一次方程组 两方程中若有一个未知数系数的绝对值相等 可直接加 减消元 若同一未知数的系数绝对值不等 则应选一个或两个方程变形 使一个未知数的系数 的绝对值相等 然后再直接用加减法求解 若方程组比较复杂 应先化简整理 三 二元一次方程组的应用 1 纯数学上的应用 1 二元一次方程定义的应用 2 方程解的概念的应用 3 代数 中的应用 4 公式变形等 2 实际生活上的应用 1 调配问题 2 行程问题 3 工程问题 4 利息问题 5 面积问题等 3 探索性应用 这类问题与上面的几类问题有联系 但也有区别 有时是一种没有结论的问题 需要你给出结论并解答 注意事项 1 在实际问题中 常会遇到有多个未知量的问题 和一元一次方程一样 二元一次方程组 也是反映现实世界数量之间相等关系的数学模型之一 要学会将实际问题转化为二元一次方程 组 从而解决一些简单的实际问题 2 二元一次方程组的解法很多 但它的基本思想都是通过消元 转化为一元一次方程来解 的 最常见的消元方法有代人法和加减法 一个方程组用什么方程来逐步消元 转化应根据它 的特点灵活选定 3 通过列方程组来解某些实际问题 应注意检验和正确作答 检验不仅要检查求得的解是 否适合方程组的每一个方程 更重要的是要考察所得的解答是否符合实际问题的要求 5 第第 8 8 章章 一元一次不等式一元一次不等式 一 基本概念 一 不等式的有关概念和性质 1 不等式的定义 用 表示不等关系的式子叫做不等式 常见不等号 注 不仅表示左右两边不等关系 还明确表示左右两边的大小 也表示不等 前者表示 不大于 小于或等于 后者表示 不小于 大于或等于 表示左右两边不相等 例如 方程 7y 3x 4 3a 3 4 7a 2m 3n 0 等都是不等式 而 2y 6 4x 8y 6z 等都不是不等式 2 不等式解的定义 能使不等式成立的未知数的值 叫做不等式的解 例如 不等式 120 5x 中 x 25 26 27 等都是 1200c 0 那么 那么 acac bcbc a ca c b cb c 不等式的基本性不等式的基本性 3 3 不等式的两边都乘以 或除以 同一个负数 不等号的 即 如果即 如果 a a b b c c 0 0 那么 那么 acac bcbc a ca c b cb c 二 解一元一次不等式 1 一元一次不等式的定义 只含有一个未知数 且含未知数的式子是整式 未知数的次数是 6 1 像这样的不等式叫做一元一次不等式一元一次不等式 例如 方程 7 3x 4 6x 2x 6 3x 2x 150 都是一元一次不等式 而这些方程 5x2 3x 1 0 2x y l 3y 5 就不是一元一次不等式 1 x 1 2 一元一次不等式的解法 解一元一次不等式的一般步骤 步骤 去分母 去括号 移项 合并同类项 未知数的系数化为去分母 去括号 移项 合并同类项 未知数的系数化为 1 1 注意 1 不等式中有多重括号时 一般应按先去小括号 再去中括号 最后去大括号的方法 去括号 每去一层括号合并同类项一次 以简便运算 2 去分母 指去掉不等式两边各项系数的分母 去分母时 要求各分母的最小公倍数 去 掉分母后 注意添括号 去分母时 不要忘记不等式两边的每一项都乘以最小公倍数 即公分 母 不等式的解法与解一元一次方程类似 完全可以把解一元一次方程的思想照搬过来 三 一元一次不等式组 1 一元一次不等式组的定义 几个几个一元一次不等式合起来就组成一元一次不等式组一元一次不等式组 与二元一次方程组不同的是 这里的 几个几个 可以两个 也可以三个 或更多个 可以两个 也可以三个 或更多个 2 一元一次不等式组的解集 不等式组中几个不等式的解集的公共部分 叫做这个不等式组的 解集 3 一元一次不等式组的解集的确定规律 同同 大大 取大 同取大 同 小小 取小 取小 大大 小小 小小 大中间找 大中间找 大大 大大 小小 小无解了小无解了 4 一元一次不等式组的解法 求不等式组的解集的过程求不等式组的解集的过程 叫做解不等式组 叫做解不等式组 一般步骤 1 分别解不等式组中的每个不等式 2 把每个不等式组的解集在数轴上表示出来 3 找出各个不等式解集的公共部分 4 再结合不等式组解集的确定规律 写出不等式组的解集 四 一元一次不等式 组 的应用 1 纯数学上的应用 1 一元一次不等式定义的应用 2 不等式解集的概念的应用 3 代数中的应用 7 2 实际生活上的应用 1 调配问题 2 行程问题 3 工程问题 4 利息问题 5 决策问题等 3 探索性应用 这类问题与上面的几类问题有联系 但也有区别 有时是一种没有结论的问题 需要你给出结论并解答 第九章第九章 多边形多边形 一 基本概念 一 三角形有关概念 1 三角形定义 三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形 这三 条线段就是三角形的边 三角形专用符号 A 顶点 2 三角形的顶点 边 B C 组成三角形的线段如图中的 AB BC AC 是这个三角形的三边边 两边的公共点叫三角形的顶点顶点 如点 A 等 三角形顶点只能用大写字 母表示 整个三角形表示为 ABC 3 三角形的内角 外角的概念 1 内角 每两条边所组成的角叫做三角形的内角内角 如 BAC 等 每个三角形有三个内角 2 外角 三角形中内角的一边与另一边的反向延长线所组成的角 叫做三角形的外角 如下图中 ACD 是 ABC 的一个外角 A 它与内角 ACB 相邻 外角 例如右图中 ACD 是 ABC 的一个外角 它与内角 ACB 相邻 B C D 与 ABC 的内角 ACB 相邻的外角有几个 它们之间有什么关系 一个三角形共有几个外角 4 三角形的分类 1 三角形按角分类可分为 是钝角 钝角三角形 有一个角 是直角 直角三角形 有一个角 是锐角 锐角三角形 三个角都 8 各类三角形的定义 锐角三角形 所有内角都是锐角的三角形叫锐角三角形 直角三角形 有一个内角是直角的三角形叫直角三角形 钝角三角形 有一个内角是钝角的三角形叫钝角三角形 2 三角形按边分类可分为 形 等边三角形 腰和底相等的等腰三角 角形 只两边等 腰和底不相等的等腰三 等腰三角形 角形 都不相等 又称斜三不等边三角形 三条边 各类三角形的定义 不等边三角形 三边互不相等的三角形叫做不等边三角形 等腰三角形 有两条边相等的三角形叫等腰三角形 相等的两边叫做等腰三角形的腰 等边三角形 三条边都相等的三角形叫等边三角形 或正三角形 5 三角形的中线 角平分线 高 记住这重要的三线 三角形的中线 三角形的一个顶点一个顶点与它的对边中点对边中点的连线连线叫三角形的中线中线 三角形的角平分线 三角形内角的平分线内角的平分线与对边的交点对边的交点和这个内角顶点之间的线段线段叫三角形的 角平分线角平分线 三角形的高 过三角形顶点作对边的垂线顶点作对边的垂线 垂足与顶点间的线段垂足与顶点间的线段叫三角形的高 注意 1 一个三角形中三条中线 高 角平分线 之间的位置关系怎样 三条中线交于一点 三条角平分线交于一点 三条高所在的直线交于一点 2 一个三角形的三条中线 角平分线 的交点与三角形有怎样的位置关系 三条中线 角平分线 相交于一点 这一点在三角形内部 3 直角三角形的三条高 它们有怎样的位置关系 钝角三角形呢 直角三角形有一条高在三角形内部 另外两条就是直角三角形的两条直角边 三条高的交点就 是直角三角形的直角顶点 钝角三角形有一条高在形内 两条高在形外 三条高所在的直线的 交点在形外 4 以上三线都是线段线段 二 三角形外角的性质以及其外角的和 1 三角形外角的性质 1 三角形的一个外角等于等于和它不相邻的两个内角的和不相邻的两个内角的和 2 三角形的一个外角大于大于任何一个和它不相邻的内角一个和它不相邻的内角 A 9 如图 D 是 ABC 边 BC 上一点 则有 ADC DAB ABD ADC DAB ADC ABD B D C 问 ADB 2 三角形外角的和 三角形的外角与和它相邻内角有什么关系 互补 1 三角形外角和的定义 与三角形的每个内角相邻的外角分别有两个 这两个外角是对顶角 从与每个内角相等的两个外角中分别取一个相加 得到的和称为三角形的外角和 2 三角形外角和定理 三角形的外角和是三角形的外角和是 360 360 三 三角形的三边关系 1 三角形三边不等关系定理 三角形的任何两边的和大于第三边 三角形的任何两边的差小于第三边 即三角形第三边的取值范围是 任何两边的差任何两边的差 第三边 任何两边的和 第三边 任何两边的和 以上定理主要用语判断给出一定长度的线段能否构成三角形和求第三边的取值范围 2 三角形具有稳定性 这就是说三角形的三条边固定 那么三角形的形状和大小就完全确定了 三角形的这个性 质叫做三角形的稳定性 四边形就不具有这个性质 四 多边形的内角和与外角和 1 多边形及其相关概念 定义 由 n 条不在同一直线上的线段首尾顺次连结组成的平面图形 记为 n 边形 又称 多边形 一个 n 边形有 n n 个内角个内角 有 2n2n 个外角个外角 如果多边形的各边都相等 各内角也都相等各边都相等 各内角也都相等 则称为正多边形 如正三角形 正四边形 正 方形 正五边形等等 对角线 连结多边形不相邻的两个顶点不相邻的两个顶点的线段线段叫做多边形的对角线 从 n 边形的一个顶点一个顶点引对角线 可以引 n 3 n 3 条 这 n 3 n 3 条对角线把 n 边形分成 n 2n 2 个 三角形三角形 从 n 边形的所有顶点引对角线的总条数为 条 2 3 nn 2 多边形的内角和公式 10 n 边形的内角和 n 2 180 n 2 180 3 多边形的外角和 1 多边形的外角和定义 从与每个内角相邻的两个外角中分别取一个相加取一个相加 得到的和称为多多 边形的外角和边形的外角和 2 多边形的外角和定理 多边形的外角和等于 360 多边形的外角和与多边形的边数无关 多边形的外角和与多边形的边数无关 五 用正多边形拼地板 1 用相同的正多边形拼地板 能拼成既不留空隙不留空隙 又不重叠又不重叠的平面图形的关键关键是围绕一点围绕一点拼在 一起的几个多边形的内角相加恰好等于内角相加恰好等于 360 360 在正三角形 正方形 正五边形 正六边形 正八边形中能够拼出完整地面是 这就是说 当 360 为正整数时 n 2 180 n 即为正整数时 用这样的正 n 边形就可以铺满地面 2n n 2 设正多边形的个数为 n 每个内角为 则要铺满地面 它们满足下列关系 n 360 2 用多种正多边形拼地板 铺垫满地面的标志 满足围绕一点的这几个正多边形的一个内角的和等于 360 设正多边形甲的个数为 n 每个内角为 正多边形乙的个数为 m 每个内角为 则它 们满足下列关系 n m 360 第十章第十章 轴对称 平移与旋转轴对称 平移与旋转 一 轴对称 1 轴对称图形 如果一个图形沿一条直线对折 对折后的两部分能 那么这个图形就是 这条直线就是它的 2 两个图形成轴对称 如果一个图形沿一条直线折叠后 它能与另一个图形 那么这两个图形成 这条直线就是它们的 折叠时重合的对应点就是 3 轴对称的性质 轴对称 成轴对称的两个 图形的对应线段 对应角 4 垂直平分线的定义 11 5 对称轴的画法 先连结一对 点 再作所连线段的 6 对称点的画法 过已知点作对称
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年版中外合作经营企业合同示范文本
- 第13课 长短参差说课稿-2025-2026学年小学书法练习指导六年级上册湘美版
- 2025电竞馆收银员雇佣合同
- 塑料厂消防演练实施管理规定
- Module 7 Unit 1说课稿-2024-2025学年外研版英语-九年级上册
- 化肥厂复合肥运输管控细则
- 快递行业服务合同协议(2025修订版)
- 《红楼梦》整本书阅读起始课 教学设计 2023-2024学年统编版高中语文必修下册
- 环保技术研发合同协议
- 第20课《天上的街市》说课稿 2024-2025学年统编版语文七年级上册
- 2024-2030年中国化工新材料行业需求趋势及发展可行性分析报告
- 中煤集团公司职称计算机试卷高级
- DB35T 772-2023 行业用水定额
- 心血管内科介入管理制度、岗位职责及工作流程
- 浙江省宁波市鄞州区曙光中学2024-2025学年九年级上学期10月月考科学试卷(1-3章)
- 2026年全年日历表带农历(A4可编辑可直接打印)预留备注位置
- 载人航天术语
- 2024年高考英语训练动词(谓语、非谓语)单句语法填空50题
- 旅游项目可行性分析报告
- 招商代理及商业运营服务 投标方案(技术方案)
- 中心静脉深静脉导管维护操作评分标准
评论
0/150
提交评论