2011-2018新课标函数与导数分类汇编(理)_第1页
2011-2018新课标函数与导数分类汇编(理)_第2页
2011-2018新课标函数与导数分类汇编(理)_第3页
2011-2018新课标函数与导数分类汇编(理)_第4页
2011-2018新课标函数与导数分类汇编(理)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 2011 20182011 2018 新课标新课标 函数与导数函数与导数 分类汇编分类汇编 一 选择题 2018 新课标 1 5 设函数 若为奇函数 则曲线在 32 1f xxaxax f x yf x 点处的切线方程为 00 A B C D 2yx yx 2yx yx 答案 D 2018 新课标 1 9 已知函数 若存在 2 个零点 0 ln0 x ex f x xx g xf xxa g x 则的取值范围是 a A B C D 10 0 1 1 答案 B 2018 新课标 2 3 函数的图像大致为 2 ee xx f x x 答案 B 2018 新课标 2 11 已知是定义域为的奇函数 满足 若 f x 1 1 fxfx 则 1 2f 1 2 3 50 ffff A B 0C 2D 50 50 答案 C 2018 新课标 3 7 函数的图像大致为 42 2yxx 2 答案 D 2018 新课标 3 12 设 则 0 2 log0 3a 2 log 0 3b A B 0abab 0abab C D 0abab 0abab 答案 D 2017 新课标 1 5 函数在单调递减 且为奇函数 若 则满足 f x 11 f 的的取值范围是 D 21 1xf x A B C D 2 2 1 1 0 4 1 3 2017 新课标 1 11 设 xyz 为正数 且 则 D 235 xyz A 2x 3y 5zB 5z 2x 3yC 3y 5z 2xD 3y 2x 5z 2017 新课标 2 11 若是函数的极值点 则的极小值为2x 21 1 x f xxaxe f x A A B C D 11 3 2e 3 5e 解析 则 21 21 x fxxaxae 3 2422101faaea 则 令 得或 21 1 x f xxxe 21 2 x fxxxe 0fx 2x 1x 当或时 当时 则极小值为 2x 1x 0fx 21x 0fx f x 11f 2017新课标3 11 已知函数有唯一零点 则 C 211 2 ee xx f xxxa a A B C D 1 1 1 3 1 2 解析 由条件 得 211 2 ee xx f xxxa f 2 x 2 x 2 2 2 x a e2 x 1 e 2 x 1 x2 4x 4 4 2x a e1 x ex 1 x2 2x a ex 1 e x 1 3 即为的对称轴 由题意 有唯一零点 的零点只能为 2 fxf x 1x f x f x f x 1x 即 解得 21 11 1 1 12 1 ee 0fa 1 2 a 2016 新课标 1 7 函数在的图像大致为 D 2 2 x yxe 2 2 A B C D 答案 解法 1 排除法 为偶函数 且 A f x 2x2 e x 2 2 887 40 6fe 解法 2 为偶函数 当时 作与 故存 2 2 x f xxe 0 x 4 x fxxe 4yx x ye 在实数 使得且时 时 0 0 1 x 0 0fx 0 0 xx 0 0fx 0 2 xx 0 0fx 在上递减 在上递增 故选 D f x 0 0 x 0 2 x 2016 新课标 1 8 若 则 C 1 01abc A B C D cc ab cc abba loglog ba acbc loglog ab cc 答案 特殊值法 令 易知 C 正确 1 4 2 2 abc 2016 新课标 2 12 已知函数满足 若函数与 Rf xx 2fxf x 1x y x 图像的交点为 则 B yf x 11 xy 22 xy mm xy 1 m ii i xy A 0 B m C 2m D 4m 4 答案 由 2f xf x 得 f x 关于 01 对称 而 11 1 x y xx 也关于 01 对称 对于每一组对称点 0 ii xx 2 ii yy 111 02 2 mmm iiii iii m xyxym 2016 新课标 3 6 已知 a 2 b 3 c 25 则 A 4 3 2 3 1 3 A b a c B a b c C b c a D c a b 2015 新课标 1 12 设函数 f x ex 2x 1 ax a 其中 a1 若存在唯一的整数 x0 使得 f x0 0 则 a 的取值范围是 D A B C D 1 2 3 e 4 3 2 3 e 4 3 2 3 e 1 2 3 e 2015 新课标 2 5 设函数 2 1 1 log 2 1 2 1 x x x f x x 2 2 log 12 ff C A 3 B 6 C 9 D 12 答案 由已知得 2 2 1log 43f 又 2 log 121 所以 22 log 12 1log 6 2 log 12 226f 故 2 2 log 12 9ff 2015 新课标 2 10 如图 长方形 ABCD 的边 AB 2 BC 1 O 是 AB 的中点 点 P 沿着边 BC CD 与 DA 运动 记 BOP x 将动点 P 到 A B 两点距离之和表示为 x 的函数 f x 则 f x 的图像大致 为 B 答案 5 的运动过程可以看出 轨迹关于直线 2 x 对称 且 42 ff 且轨迹非线型 2015 新课标 2 12 设函数 f x 是奇函数 f x xR 的导函数 f 1 0 当0 x 时 0 xfxf x 则使得 0f x 成立的 x 的取值范围是 A A B C D 1 0 1 1 0 1 1 1 0 0 1 1 答案 记函数 f x g x x 则 2 xfxf x g x x 因为当0 x 时 0 xfxf x 故当0 x 时 0g x 所以 g x在 0 单调递减 又因为函数 f x xR 是奇函数 故函数 g x是偶函数 所以 g x在 0 单调递减 且 1 1 0gg 当01x 时 0g x 则 0f x 当1x 时 0g x 则 0f x 综上所述 使得 0f x 成立的x的取值范围是 1 0 1 2014 新课标 1 3 设函数 f x g x 的定义域都为 R 且 f x 是奇函数 g x 是偶 函数 则下列结论中正确的是 C A f x g x 是偶函数 B f x g x 是奇函数 C f x g x 是奇函数 D f x g x 是奇函数 答案 因为 f x 是奇函数 g x 是偶函数 所以 f x 为偶函数 g x 为偶函 数 再根据两个奇函数的积是偶函数 两个偶函数的积还是偶函数 一个奇函数与一个偶函数 的积是奇函数 可得 f x g x 为奇函数 2014 新课标 1 6 如图 圆 O 的半径为 1 A 是圆上的定点 P 是圆 上的动点 角 x 的始边为射线 OA 终边为射线 OP 过点 P 做直线 OA 的垂线 垂足为 M 将点 M 到直线 OP 的距离表示为 x 的函数 f x 则 y f x 在 0 的图象大致为 C A B 6 C D 答案 解 在直角三角形 OMP 中 OP 1 POM x 则 OM cosx 所以点 M 到直线 OP 的距离表示为 x 的函数 f x OM sinx cosx sinx sin2x 其周期为 T 最大值为 最小值为 0 2014 新课标 1 11 已知函数 f x ax3 3x2 1 若 f x 存在唯一的零点 x0 且 x0 0 则 a 的取值范围是 C A 2 B 1 C 2 D 1 答案 1 当 a 0 时 f x 3x2 1 0 解得 x 函数 f x 有两个零点 不符合题意 应 舍去 2 当 a 0 时 令 f x 3ax2 6x 3ax 0 解得 x 0 或 x 0 列表如下 x 0 0 f x 0 0 f x 单调递增极大值单调递减极小值单调递增 x f x 而 f 0 1 0 存在 x 0 使得 f x 0 不符合条件 f x 存 在唯一的零点 x0 且 x0 0 应舍去 3 当 a 0 时 f x 3ax2 6x 3ax 0 解得 x 0 或 x 0 列表如下 x 0 0 7 f x 0 0 f x 单调递减极小值单调递增极大值单调递减 而 f 0 1 0 x 时 f x 存在 x0 0 使得 f x0 0 f x 存在唯一的零点 x0 且 x0 0 极小值 化为 a2 4 a 0 a 2 综上可知 a 的取值范围是 2 2014 新课标 2 8 设曲线 y ax ln x 1 在点 0 0 处的切线方程为 y 2x 则 a D A 0 B 1 C 2 D 3 2014 新课标 2 12 设函数 若存在的极值点满足 3sin x f x m f x 0 x 则 m 的取值范围是 C 2 22 00 xf xm A B C D 66 44 22 14 2013 新课标 1 11 已知函数 f x Error 若 f x ax 则 a 的取值范围是 D A 0 B 1 C 2 1 D 2 0 答案 由 得 且 f x 2 2 0 ln 1 0 xx x xx f xax 2 0 2 x xxax 0 ln 1 x xax 由可得 则 2 排除 当 1 时 易证对 2 0 2 x xxax 2ax aaln 1 xx 恒成立 故 1 不适合 排除 C 故选 D 0 x a 2013 新课标 1 8 设 a log36 b log510 c log714 则 D A c b a B b c a C a c b D a b c 答案 根据公式变形 因为 lg lg6lg2 1 lg3lg3 a lg10lg2 1 lg5lg5 b lg14lg2 1 lg7lg7 c 7 lg 5 lg 3 所以 即 lg2lg2lg2 lg7lg5lg3 c b a 8 2013 新课标 1 10 已知函数 f x x3 ax2 bx c 下列结论中错误的是 C A x0 R f x0 0 B 函数 y f x 的图像是中心对称图形 C 若 x0 是 f x 的极小值点 则 f x 在区间 x0 单调递减 D 若 x0 是 f x 的极值点 则 f x0 0 答案 x0是 f x 的极小值点 则 y f x 的图像大致如下图所示 则在 x0 上不单调 故 C 不正确 2013 新课标 1 12 已知点 A 1 0 B 1 0 C 0 1 直线 y ax b a 0 将 ABC 分割为 面积相等的两部分 则 b 的取值范围是 B A 0 1 B C D 2 1 1 22 2 1 1 23 1 1 3 2 2012 新课标 10 已知函数 则 y f x 的图象大致为 A B C D 答案 解 设 则 g x g x 在 1 0 上为增函数 在 0 上为减函数 g x g 0 0 f x 0 得 x 0 或 1 x 0 均有 f x 0 排除 A C D 2012 新课标 12 设点 P 在曲线上 点 Q 在曲线 y ln 2x 上 则 PQ 最小值为 A 1 ln2 B C 1 ln2 D 9 答案 函数与函数 y ln 2x 互为反函数 图象关于 y x 对称 函数上的点到直线 y x 的距离为 设 g x x 0 则 由 0 可得 x ln2 由 0 可得 0 x ln2 函数 g x 在 0 ln2 单调递减 在 ln2 单调递增 当 x ln2 时 函数 g x min 1 ln2 2011 新课标 2 下列函数中 既是偶函数又在 0 单调递增的函数是 B A B C D y x 3 1yx 2 1yx 2 x y 2011 新课标 9 由曲线 直线及轴所围成的图形的面积为 C yx 2yx y A B 4 C D 6 10 3 16 3 二 填空题 2016 新课标 2 16 若直线是曲线的切线 也是曲线的切线 ykxb ln2yx ln1yx 1 ln2 b 答案 ln2yx 的切线为 1 1 1 ln1yxx x 设切点横坐标为 1 x ln1yx 的切线为 2 2 22 1 ln1 11 x yxx xx 10 12 2 12 2 11 1 ln1ln1 1 xx x xx x 解得 1 1 2 x 2 1 2 x 2016 新课标 3 15 已知 f x 为偶函数 当 x 0 时 f x ln x 3x 则曲线 y f x 在点 1 3 处的切线方程是 y 2x 1 0 2015 新课标 1 13 若函数为偶函数 则 a 1 ln 2 xaxxxf 2014 新课标 2 15 已知偶函数在单调递减 若 则 f x 0 20f 10f x 的取值范围是 1 3 x 2013 新课标 1 若函数 f x 1 x2 x2 ax b 的图像关于直线 x 2 对称 则 f x 的最大 值是 16 答案 由图像关于直线 2 对称 则 f xx 0 1 3 ff 22 1 3 3 3 ab 0 解得 1 5 ff 22 1 5 5 5 ab 8 15 ab f x 22 1 815 xxx fx 22 2 815 1 28 x xxxx 32 4 672 xxx 4 2 25 25 xxx 当 2 时 0 x25 25 fx 当 2 时 0 x25 25 fx 在 单调递增 在 2 单调递减 在 f x25 25 2 单调递增 在 单调递减 故当 和 25 25 x25 x 时取极大值 16 25 25 f 25 f 2017新课标3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论